Suppr超能文献

Biomechanical response to changes in natural turf during running and turning.

作者信息

Stiles Victoria H, Guisasola Igor N, James Iain T, Dixon Sharon J

机构信息

Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, U.K.

出版信息

J Appl Biomech. 2011 Feb;27(1):54-63. doi: 10.1123/jab.27.1.54.

Abstract

Integrated biomechanical and engineering assessments were used to determine how humans responded to variations in turf during running and turning. Ground reaction force (AMTI, 960 Hz) and kinematic data (Vicon Peak Motus, 120 Hz) were collected from eight participants during running (3.83 m/s) and turning (10 trials per condition) on three natural turf surfaces in the laboratory. Surface hardness (Clegg hammer) and shear strength (cruciform shear vane) were measured before and after participant testing. Peak loading rate during running was significantly higher (p < .05) on the least hard surface (sandy; 101.48 BW/s ± 23.3) compared with clay (84.67 BW/s ± 22.9). There were no significant differences in running kinematics. Compared with the "medium" condition, fifth MTP impact velocities during turning were significantly (RM-ANOVA, p < .05) lower on clay (resultant: 2.30 m/s [± 0.68] compared with 2.64 m/s [± 0.70]), which was significantly (p < .05) harder "after" and had the greatest shear strength both "before" and "after" participant testing. This unique finding suggests that further study of foot impact velocities are important to increase understanding of overuse injury mechanisms.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验