Unité Mixte de Génomique du Cancer, Hôpital Laënnec, Bd J. Monod, 44805, Nantes-Saint Herblain Cedex, France.
Breast Cancer Res Treat. 2012 Feb;131(3):765-75. doi: 10.1007/s10549-011-1457-7. Epub 2011 Mar 31.
Gene prognostic meta-analyses should benefit from breast tumour genomic data obtained during the last decade. The aim was to develop a user-friendly, web-based application, based on DNA microarrays results, called "breast cancer Gene-Expression Miner" (bc-GenExMiner) to improve gene prognostic analysis performance by using the same bioinformatics process. bc-GenExMiner was developed as a web-based tool including a MySQL relational database. Survival analyses are performed with R statistical software and packages. Molecular subtyping was performed by means of three single sample predictors (SSPs) and three subtype clustering models (SCMs). Twenty-one public data sets have been included. Among the 3,414 recovered breast cancer patients, 1,209 experienced a pejorative event. Molecular subtyping by means of three SSPs and three SCMs was performed for 3,063 patients. Furthermore, three robust lists of stable subtyped patients were built to maximize reliability of molecular assignment. Gene prognostic analyses are done by means of univariate Cox proportional hazards model and may be conducted on cohorts split by nodal (N), oestrogen receptor (ER), or molecular subtype status. To evaluate independent prognostic impact of genes relative to Nottingham Prognostic Index and Adjuvant! Online, adjusted Cox proportional hazards models are performed. bc-GenExMiner allows researchers without specific computation skills to easily and quickly evaluate the in vivo prognostic role of genes in breast cancer by means of Cox proportional hazards model on large pooled cohorts, which may be split according to different prognostic parameters: N, ER, and molecular subtype. Prognostic analyses by molecular subtype may also be performed in three robust molecular subtype classifications.
基因预后荟萃分析应该受益于过去十年获得的乳腺癌基因组数据。目的是开发一个基于 DNA 微阵列结果的用户友好型网络应用程序,称为“乳腺癌基因表达挖掘器”(bc-GenExMiner),通过使用相同的生物信息学流程来提高基因预后分析性能。bc-GenExMiner 是一个基于网络的工具,包括一个 MySQL 关系数据库。生存分析是使用 R 统计软件和软件包进行的。分子亚型分析是通过三个单样本预测器(SSP)和三个亚型聚类模型(SCM)进行的。共纳入了 21 个公共数据集。在 3414 名已恢复的乳腺癌患者中,有 1209 人发生了不良事件。对 3063 名患者进行了三种 SSP 和三种 SCM 的分子亚型分析。此外,还构建了三个稳健的定型患者列表,以最大程度地提高分子分配的可靠性。基因预后分析是通过单变量 Cox 比例风险模型进行的,并且可以根据淋巴结(N)、雌激素受体(ER)或分子亚型状态对队列进行分割。为了评估基因相对于 Nottingham 预后指数和辅助!在线的独立预后影响,进行了调整后的 Cox 比例风险模型。bc-GenExMiner 允许没有特定计算技能的研究人员通过 Cox 比例风险模型在大型汇总队列中轻松快速地评估基因在乳腺癌中的体内预后作用,这些队列可以根据不同的预后参数进行分割:N、ER 和分子亚型。也可以在三种稳健的分子亚型分类中进行分子亚型预后分析。