Suppr超能文献

利用计算方法探索乳腺癌中LDHA与ABCC1之间的相互作用。

Exploring the interplay between LDHA and ABCC1 in breast cancer using computational approach.

作者信息

Alshehri Bader

机构信息

Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Almajmaah, Kingdom of Saudi Arabia.

出版信息

Discov Oncol. 2025 Aug 5;16(1):1471. doi: 10.1007/s12672-025-03354-w.

Abstract

BACKGROUND

Drug resistance is the major cause of the high death rates in Breast cancer (BC), which continues to be the most frequent disease among women. Chemoresistance is significantly mediated by drug efflux transporters, including ATP-binding cassette transporter ABCC1, and glycolytic enzymes, especially lactate dehydrogenase A (LDHA). Improving treatment results requires an understanding of the expression patterns, genetic changes, and prognostic importance of ABCC1 and LDHA.

OBJECTIVE

Breast Cancer This study aims to elucidate the role of and in BC prognosis, tumor progression, and treatment resistance using integrated bioinformatics and in-silico approaches.

METHODOLOGY

To investigate the expression and correlation between LDHA and ABCC1, in-silico analysis was done using a range of bioinformatics tools, such as UALCAN, TIMER 2.0, Bc GeneExminer, DISCO, and others, were used. GeneMANIA and STRING databases were used to explore gene–gene and protein–protein interaction networks, while KM Plotter evaluated survival correlations. Functional enrichment and pathway analyses were conducted using Enrichr for Gene Ontology (GO) and KEGG pathways. For therapeutic targeting, structure-based molecular docking was performed using AutoDock Vina, where selected anticancer compounds were docked against LDHA and ABCC1 to identify potential inhibitors.

RESULTS

Our research indicates that the expression levels of LDHA and ABCC1 are elevated in several malignancies including Breast Cancer. The elevated expression levels of LDHA and ABCC1 significantly correlate with worse overall survival. Expression analysis of and genes in relation to LDHA and ABCC1 mutations in Breast Cancer samples revealed that higher ENO1 expression is observed in mutant samples, while ESR1 expression is significantly reduced, suggesting an association with altered metabolic and hormonal pathways. Furthermore, NHI-2 and Sulfinpyrazone were found as the potential chemical that targets LDHA and ABCC1 through in-silico studies.

CONCLUSION

This study highlights the oncogenic significance of LDHA and ABCC1 in Breast Cancer progression and therapy resistance. The in-silico identification of NHI-2 and sulfinpyrazone as potential inhibitors supports a novel dual-targeting strategy to simultaneously disrupt metabolic and drug efflux pathways, which could enhance therapeutic efficacy and overcome resistance in Breast Cancer. Further experimental validation is warranted to confirm these findings and facilitate clinical translation.

摘要

背景

耐药性是乳腺癌(BC)高死亡率的主要原因,乳腺癌仍是女性中最常见的疾病。化疗耐药性主要由药物外排转运蛋白介导,包括ATP结合盒转运蛋白ABCC1,以及糖酵解酶,尤其是乳酸脱氢酶A(LDHA)。改善治疗效果需要了解ABCC1和LDHA的表达模式、基因变化及预后重要性。

目的

本研究旨在使用综合生物信息学和计算机模拟方法阐明ABCC1和LDHA在乳腺癌预后、肿瘤进展及治疗耐药中的作用。

方法

为研究LDHA和ABCC1之间的表达及相关性,使用了一系列生物信息学工具进行计算机模拟分析,如UALCAN、TIMER 2.0、Bc GeneExminer、DISCO等。使用GeneMANIA和STRING数据库探索基因-基因和蛋白质-蛋白质相互作用网络,而KM Plotter评估生存相关性。使用Enrichr对基因本体论(GO)和KEGG通路进行功能富集和通路分析。为进行治疗靶点研究,使用AutoDock Vina进行基于结构的分子对接,将选定的抗癌化合物与LDHA和ABCC1对接以鉴定潜在抑制剂。

结果

我们的研究表明,LDHA和ABCC1的表达水平在包括乳腺癌在内的多种恶性肿瘤中升高。LDHA和ABCC1表达水平升高与总体生存期较差显著相关。对乳腺癌样本中与LDHA和ABCC1突变相关的ENO1和ESR1基因的表达分析表明,在突变样本中观察到较高的ENO1表达,而ESR1表达显著降低,提示与代谢和激素通路改变有关。此外,通过计算机模拟研究发现NHI-2和磺吡酮是靶向LDHA和ABCC1的潜在化学物质。

结论

本研究突出了LDHA和ABCC1在乳腺癌进展和治疗耐药中的致癌意义。通过计算机模拟鉴定NHI-2和磺吡酮为潜在抑制剂,支持了一种新型双靶点策略,可同时破坏代谢和药物外排通路,这可能提高治疗效果并克服乳腺癌耐药。需要进一步的实验验证来证实这些发现并促进临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c82/12325138/d9dfdaf45786/12672_2025_3354_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验