Chari Madhu, Lam Carol K.L., Lam Tony K.T.
Despite the undeniable influence of genetic and environmental factors, obesity is ultimately a resultant of, and perpetuated by, a disruption in energy homeostasis, whereby energy (food) intake exceeds energy expenditure. Normally, there is a series of concerted physiological and biochemical checks and balances initiated to handle acute, day-to-day fluctuations in energy balance: for example, an elevation in adiposity resulting from increased energy intake leads to counter-regulation via an increase in adipose-derived hormones, such as lesptin (Friedman, 2003), and an increase in energy expenditure (López et al., 2007). Conversely, the fasting state shifts the energy balance such that energy stores are maintained while an increased propensity for food intake results (Lelliott and Vidal-Puig, 2004). As a result of these feedback signals that relay changes in energy status, the caloric storage/body weight is generally stable for most humans over long periods of time despite the wide variations in day-to-day food intake that occur. These above homeostatic responses are poised to handle subthreshold fluctuations in food intake, but clearly, chronic hyper-caloric excess combined with reduced energy mobilization (i.e., exercise) limits their effectiveness (López et al., 2007), and leads to increased adiposity. In addition, this physiological cross-regulation also provides a reason for the inherent difficulty in losing large amounts of weight and sustaining that weight loss, as massive weight loss is capable of triggering rebound hunger (Friedman, 2003). Further impacting the effectiveness of the energy balance mechanism is the influence of the inherent sensory circuitry that mediates the pleasure and reward on feeding (Flier, 2004). Thus, identifying the nature of the satiety and hunger signals generated in the body that are involved in the regulation of feeding behavior has historically been a necessary preoccupation in obesity research. By the mid-twentieth century, the glucostatic (Mayer, 1953) and lipostatic (Kennedy, 1953) hypotheses, which proposed that circulating nutrients (glucose and lipids, respectively) generated in amounts proportional to peripheral storage depots serve as signals to the brain in order to mediate alterations in energy intake and expenditure, were in place. As a result, research then shifted to focus on the primary energy storage sites in the periphery, including the adipose tissue, skeletal muscle, and the liver, and their potential ability to sense energy and mediate the control of energy intake. The liver, given that it is exposed to the postabsorption nutrient flow (Langhans, 1996) and that hepatocytes are essentially able to metabolize all fuels (Seifter and Englard, 1988), was a natural target that in particular was quite convincingly demonstrated as a possible mediator of the hunger/satiety signal (Langhans, 1996). However, the hypothalamus in particular has long been championed as a key mediator of whole body energy homeostasis. Presently, it is generally accepted that it is involved in the day-to-day regulation of a number of factors including body temperature, blood pressure, thirst, and hunger, and is a vital structure for the integration of the nervous and endocrine systems. The first demonstrations of the hypothalamus serving as a satiety centre were conducted several decades ago, wherein hyperphagia and obesity resulted after the ventromedial nucleus of the hypothalamus was subjected to bilateral lesions (Hetherington and Ranson, 1942). Furthermore, the observed hyperphagia following the administration of the classical 2-deoxyglucose (2-DG) antime-tabolite into the third ventricle of the brain (Miselis and Epstein, 1975) demonstrated a central fuel-sensing component to the regulation of energy homeostasis. Numerous landmark studies—the vast majority of which were conducted in the past decade—have demonstrated that the latter possibility holds much promise. The central nervous system (CNS) has been shown to sense hormones and nutrients in order to regulate not only food intake (Cota et al., 2006; Lam et al., 2008; Luheshi et al., 1999; Morton et al., 2006; Turton et al., 1996; Wolfgang and Lane, 2006) but also glucose homeostasis (Bence et al., 2006; Coppari et al., 2005; Gelling et al., 2006; Inoue et al., 2006; Kievit et al., 2006; Lam et al., 2005a,b,c; Obici et al., 2002a,b 2003). Of particular interest and relevance, changes in hypothalamic fatty acid levels and metabolism have been shown to regulate both food intake (Loftus et al., 2000) and glucose homeostasis (Obici et al., 2002a, 2003). As obesity and diabetes are characterized by hyperphagia and hyperglycemia, the characterization of defects in the hormone- and nutrient-sensing pathways in the hypothalamus that regulate energy and glucose homeostasis will shed light on the central component that initiates and perpetuates these metabolic diseases.
尽管遗传和环境因素的影响不可否认,但肥胖最终是能量稳态失衡的结果,并因这种失衡而持续存在,即能量(食物)摄入超过能量消耗。正常情况下,身体会启动一系列协调一致的生理和生化检查与平衡机制来应对日常能量平衡的急性波动:例如,能量摄入增加导致肥胖增加,会通过脂肪衍生激素(如瘦素)的增加引发反调节(弗里德曼,2003年),以及能量消耗增加(洛佩斯等人,2007年)。相反,禁食状态会改变能量平衡,使能量储备得以维持,同时导致食物摄入倾向增加(利利奥特和维达尔 - 皮格,2004年)。由于这些反馈信号传递了能量状态的变化,尽管日常食物摄入量差异很大,但大多数人的热量储存/体重在很长一段时间内通常是稳定的。上述稳态反应能够应对食物摄入量的亚阈值波动,但显然,长期高热量摄入加上能量动员减少(即运动不足)会限制其有效性(洛佩斯等人,2007年),并导致肥胖增加。此外,这种生理交叉调节也解释了大量减重并维持体重减轻存在固有困难的原因,因为大量减重会引发反弹性饥饿(弗里德曼,2003年)。进一步影响能量平衡机制有效性的是介导进食愉悦和奖励的内在感觉回路的影响(弗利尔,2004年)。因此,确定身体中参与调节进食行为的饱腹感和饥饿信号的本质,一直是肥胖研究中必要的关注点。到20世纪中叶,提出循环营养素(分别为葡萄糖和脂质)以与外周储存库成比例的量产生,并作为向大脑发出的信号来介导能量摄入和消耗变化的葡萄糖稳态(梅耶,1953年)和脂肪稳态(肯尼迪,1953年)假说已经形成。结果,研究随后转向关注外周的主要能量储存部位,包括脂肪组织、骨骼肌和肝脏,以及它们感知能量并介导能量摄入控制的潜在能力。鉴于肝脏暴露于吸收后营养物质流(朗汉斯,1996年),并且肝细胞基本上能够代谢所有燃料(西弗特和恩格拉德,1988年),肝脏成为一个自然的研究靶点,并且有相当有说服力的证据表明它可能是饥饿/饱腹感信号的介导者(朗汉斯,1996年)。然而,长期以来,下丘脑一直被认为是全身能量稳态的关键介导者。目前,人们普遍认为它参与了包括体温、血压、口渴和饥饿等多种因素的日常调节,并且是神经和内分泌系统整合的重要结构。几十年前就进行了下丘脑作为饱腹感中枢的首次证明,其中下丘脑腹内侧核受到双侧损伤后出现了食欲亢进和肥胖(赫瑟林顿和兰森,1942年)。此外,在将经典的2 - 脱氧葡萄糖(2 - DG)抗代谢物注入脑第三脑室后观察到的食欲亢进(米塞利斯和爱泼斯坦,1975年),证明了能量稳态调节中存在中枢燃料感知成分。众多具有里程碑意义的研究——其中绝大多数是在过去十年中进行的——表明后一种可能性很有前景。中枢神经系统(CNS)已被证明能够感知激素和营养素,不仅可以调节食物摄入(科塔等人,2006年;林等人,2008年;卢赫希等人,1999年;莫顿等人,2006年;特尔顿等人,1996年;沃尔夫冈和莱恩,2006年),还可以调节葡萄糖稳态(本斯等人,2006年;科帕里等人,2005年;盖林等人,2006年;井上等人,2006年;基维特等人,2006年;林等人,2005a、b、c;奥比西等人,2002a、b、2003年)。特别值得关注和相关的是,下丘脑脂肪酸水平和代谢的变化已被证明可以调节食物摄入(洛夫特斯等人,2000年)和葡萄糖稳态(奥比西等人,2002a、2003年)。由于肥胖和糖尿病的特征是食欲亢进和高血糖,对下丘脑调节能量和葡萄糖稳态的激素和营养素感知途径中的缺陷进行表征,将有助于揭示引发和维持这些代谢疾病的中枢成分。