Suppr超能文献

下丘脑神经元组胺:其对能量代谢的稳态控制的意义。

Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism.

作者信息

Sakata T, Yoshimatsu H, Kurokawa M

机构信息

Department of Internal Medicine, School of Medicine, Oita Medical University, Japan.

出版信息

Nutrition. 1997 May;13(5):403-11. doi: 10.1016/s0899-9007(97)91277-6.

Abstract

In a series of studies on histaminergic functions in the hypothalamus, probes to manipulate activities of histaminergic neuron systems were applied to assess its physiologic and pathophysiologic implications using non-obese normal and Zucker obese rats, an animal model of genetic obesity. Food intake is suppressed by either activation of H1-receptor or inhibition of the H3-receptor in the ventromedial hypothalamus (VMH) or the paraventricular nucleus, each of which is involved in satiety regulation. Histamine neurons in the mesencephalic trigeminal sensory nucleus modulate masticatory functions, particularly eating speed through the mesencephalic trigeminal motor nucleus, and activation of the histamine neurons in the VMH suppress intake volume of feeding at meals. Energy deficiency in the brain, i.e., intraneuronal glucoprivation, activates neuronal histamine in the hypothalamus. Such low energy intake in turn accelerates glycogenolysis in the astrocytes to prevent the brain from energy deficit. Thus, both mastication and low energy intake act as afferent signals for activation of histaminergic nerve systems in the hypothalamus and result in enhancement of satiation. There is a rationale for efficacy of a very-low-calorie conventional Japanese diet as a therapeutic tool for weight reduction. Feeding circadian rhythm is modulated by manipulation of hypothalamic histamine neurons. Hypothalamic histamine neurons are activated by an increase in ambient temperature. Hypothalamic neuronal histamine controls adaptive behavior including a decrease in food intake and ambulation, and an increase in water intake to maintain body temperature to be normally constant. In addition, interleukin-1 beta, an endogenous pyrogen, enhanced turnover of neuronal histamine through prostaglandin E2 in the brain. Taken together, the histamine neuron system in the hypothalamus is essential for maintenance of thermoregulation through the direct and indirect control of adaptive behavior. Behavioral and metabolic abnormalities of obese Zucker rats including hyperphagia, disruption of feeding circadian rhythm, hyperlipidemia, hyperinsulinemia, and disturbance of thermoregulation are essentially derived from a defect in hypothalamic neuronal histamine. Abnormalities produced by depletion of neuronal histamine from the hypothalamus in normal rats mimic those of obese Zuckers. Grafting the lean Zucker fetal hypothalamus into the obese Zucker pups attenuates those abnormalities. These findings indicate that histamine nerve systems in the brain play a crucial role in maintaining homeostatic energy balance.

摘要

在一系列关于下丘脑组胺能功能的研究中,运用了操纵组胺能神经元系统活动的探针,以非肥胖正常大鼠和遗传性肥胖动物模型—— Zucker肥胖大鼠来评估其生理和病理生理意义。在下丘脑腹内侧核(VMH)或室旁核中,激活H1受体或抑制H3受体均可抑制食物摄入,这两个核均参与饱腹感调节。中脑三叉神经感觉核中的组胺能神经元调节咀嚼功能,特别是通过中脑三叉神经运动核调节进食速度,VMH中组胺能神经元的激活会抑制进餐时的进食量。大脑中的能量不足,即神经元内葡萄糖缺乏,会激活下丘脑的神经元组胺。这种低能量摄入反过来会加速星形胶质细胞中的糖原分解,以防止大脑出现能量不足。因此,咀嚼和低能量摄入均作为传入信号激活下丘脑的组胺能神经系统,并导致饱腹感增强。极低热量的传统日本饮食作为减肥治疗工具的有效性是有理论依据的。进食昼夜节律受下丘脑组胺能神经元操纵的调节。下丘脑组胺能神经元会因环境温度升高而被激活。下丘脑神经元组胺控制适应性行为,包括减少食物摄入和活动,以及增加水摄入以维持体温正常恒定。此外,内源性致热原白细胞介素 -1β 通过大脑中的前列腺素E2增强神经元组胺的更新。综上所述,下丘脑的组胺能神经元系统通过对适应性行为的直接和间接控制,对维持体温调节至关重要。肥胖 Zucker 大鼠的行为和代谢异常,包括食欲亢进、进食昼夜节律紊乱、高脂血症、高胰岛素血症和体温调节障碍,本质上源于下丘脑神经元组胺的缺陷。正常大鼠下丘脑神经元组胺耗竭产生的异常与肥胖 Zucker 大鼠相似。将瘦 Zucker 胎儿下丘脑移植到肥胖 Zucker 幼崽中可减轻这些异常。这些发现表明,大脑中的组胺能神经系统在维持能量平衡稳态中起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验