Suppr超能文献

光刻图形化石墨烯纳米带的拉曼光谱。

Raman spectroscopy of lithographically patterned graphene nanoribbons.

机构信息

Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea.

出版信息

ACS Nano. 2011 May 24;5(5):4123-30. doi: 10.1021/nn200799y. Epub 2011 Apr 13.

Abstract

Nanometer-scale graphene objects are attracting much research interest because of newly emerging properties originating from quantum confinement effects. We present Raman spectroscopy studies of graphene nanoribbons (GNRs), which are known to have nonzero electronic bandgap. GNRs of width ranging from 15 to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by an upshifted G band and a prominent disorder-related D band originating from scattering at the ribbon edges. The D-to-G band intensity ratio generally increases with decreasing ribbon width. However, its decrease in width of <25 nm, partly attributed to amorphization at the edges, provides a valuable experimental estimate on D mode relaxation length of <5 nm. The upshift in the G band of the narrowest GNRs can be attributed to confinement effect or chemical doping by functional groups on the GNR edges. Notably, GNRs are much more susceptible to photothermal effects resulting in reversible hole doping caused by atmospheric oxygen than bulk graphene sheets. Finally we show that the 2D band is still a reliable marker in determining the number of layers of GNRs despite its significant broadening for very narrow GNRs.

摘要

纳米级石墨烯因其量子限域效应而具有新兴的性质,因此引起了广泛的研究兴趣。我们对石墨烯纳米带(GNRs)进行了拉曼光谱研究,已知其具有非零的能带隙。通过机械剥离石墨烯的电子束光刻图案化和随后的氧等离子体蚀刻,制备了宽度从 15 到 100nm 的 GNRs。窄 GNR 的拉曼光谱可以通过 G 带的上移和源自边缘散射的突出的无序相关 D 带来表征。D 带与 G 带的强度比通常随带的宽度减小而增加。然而,其在<25nm 宽度下的减小部分归因于边缘的非晶化,为 D 模式弛豫长度<5nm 提供了有价值的实验估计。最窄的 GNR 的 G 带的上移可以归因于边缘的受限效应或官能团的化学掺杂。值得注意的是,GNR 比大块石墨烯片更容易受到光热效应的影响,从而导致大气氧引起的可逆空穴掺杂。最后,我们表明,尽管对于非常窄的 GNR,2D 带的展宽非常显著,但它仍然是确定 GNR 层数的可靠标记。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验