Suppr超能文献

θ 波和 γ 波的功率随记忆负荷增加而增加,α/β 波的功率随记忆负荷增加而减少,这在吸引子网络模型中得到了体现。

Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model.

机构信息

Royal Institute of Technology (KTH), Sweden, and Stockholm University, Sweden.

出版信息

J Cogn Neurosci. 2011 Oct;23(10):3008-20. doi: 10.1162/jocn_a_00029. Epub 2011 Mar 31.

Abstract

Changes in oscillatory brain activity are strongly correlated with performance in cognitive tasks and modulations in specific frequency bands are associated with working memory tasks. Mesoscale network models allow the study of oscillations as an emergent feature of neuronal activity. Here we extend a previously developed attractor network model, shown to faithfully reproduce single-cell activity during retention and memory recall, with synaptic augmentation. This enables the network to function as a multi-item working memory by cyclic reactivation of up to six items. The reactivation happens at theta frequency, consistently with recent experimental findings, with increasing theta power for each additional item loaded in the network's memory. Furthermore, each memory reactivation is associated with gamma oscillations. Thus, single-cell spike trains as well as gamma oscillations in local groups are nested in the theta cycle. The network also exhibits an idling rhythm in the alpha/beta band associated with a noncoding global attractor. Put together, the resulting effect is increasing theta and gamma power and decreasing alpha/beta power with growing working memory load, rendering the network mechanisms involved a plausible explanation for this often reported behavior.

摘要

脑振荡活动的变化与认知任务中的表现密切相关,特定频带的调制与工作记忆任务有关。中尺度网络模型允许将振荡作为神经元活动的一个突现特征进行研究。在这里,我们扩展了一个先前开发的吸引子网络模型,该模型在保留和记忆回忆期间表现出与单细胞活动的忠实再现,并通过突触增强。这使得网络能够通过最多六个项目的循环再激活作为多项目工作记忆发挥作用。再激活发生在θ频率,与最近的实验结果一致,随着网络记忆中加载的附加项目数量的增加,θ功率增加。此外,每个记忆再激活都与γ振荡相关。因此,单细胞尖峰序列以及局部群中的γ振荡嵌套在θ周期中。该网络还表现出与非编码全局吸引子相关的α/β波段的空闲节律。总的来说,随着工作记忆负荷的增加,网络会产生增加θ和γ功率以及降低α/β功率的效果,这使得所涉及的网络机制成为对这种经常报道的行为的一个合理解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验