Suppr超能文献

缺乏核心蛋白聚糖会导致心脏成纤维细胞向肌成纤维细胞表型分化。

Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype.

机构信息

Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf 40225, Germany.

出版信息

J Biol Chem. 2011 May 13;286(19):17365-75. doi: 10.1074/jbc.M110.192682. Epub 2011 Mar 18.

Abstract

Myocardial infarction (MI) is followed by extracellular matrix (ECM) remodeling, which is on the one hand required for the healing response and the formation of stable scar tissue. However, on the other hand, ECM remodeling can lead to fibrosis and decreased ventricular compliance. The small leucine-rich proteoglycan (SLRP), biglycan (bgn), has been shown to be critically involved in these processes. During post-infarct remodeling cardiac fibroblasts differentiate into myofibroblasts which are the main cell type mediating ECM remodeling. The aim of the present study was to characterize the role of bgn in modulating the phenotype of cardiac fibroblasts. Cardiac fibroblasts were isolated from hearts of wild-type (WT) versus bgn(-/0) mice. Phenotypic characterization of the bgn(-/0) fibroblasts revealed increased proliferation. Importantly, this phenotype of bgn(-/0) fibroblasts was abolished to the WT level by reconstitution of biglycan in the ECM. TGF-β receptor II expression and phosphorylation of SMAD2 were increased. Furthermore, indicative of a myofibroblast phenotype bgn(-/0) fibroblasts were characterized by increased α-smooth muscle actin (α-SMA) incorporated into stress fibers, increased formation of focal adhesions, and increased contraction of collagen gels. Administration of neutralizing antibodies to TGF-β reversed the pro-proliferative, myofibroblastic phenotype. In vivo post-MI α-SMA, TGF-β receptor II expression, and SMAD2 phosphorylation were markedly increased in bgn(-/0) mice. Collectively, the data suggest that bgn deficiency promotes myofibroblast differentiation and proliferation in vitro and in vivo likely due to increased responses to TGF-β and SMAD2 signaling.

摘要

心肌梗死(MI)后会发生细胞外基质(ECM)重塑,一方面这是愈合反应和形成稳定疤痕组织所必需的。然而,另一方面,ECM 重塑会导致纤维化和心室顺应性降低。小富含亮氨酸的蛋白聚糖(SLRP)、biglycan(bgn)已被证明在这些过程中起关键作用。在梗死后重塑过程中,心肌成纤维细胞分化为肌成纤维细胞,是介导 ECM 重塑的主要细胞类型。本研究的目的是表征 bgn 在调节心肌成纤维细胞表型中的作用。从野生型(WT)和 bgn(-/0) 小鼠的心脏中分离出心肌成纤维细胞。bgn(-/0) 成纤维细胞的表型特征显示增殖增加。重要的是,通过在 ECM 中重建 biglycan,bgn(-/0) 成纤维细胞的这种表型被消除到 WT 水平。TGF-β 受体 II 的表达和 SMAD2 的磷酸化增加。此外,bgn(-/0) 成纤维细胞具有肌成纤维细胞表型的特征,表现为应激纤维中增加的α-平滑肌肌动蛋白(α-SMA)掺入、焦点粘连的形成增加以及胶原蛋白凝胶的收缩增加。中和 TGF-β 的抗体给药逆转了促增殖、肌成纤维细胞表型。梗死后体内,bgn(-/0) 小鼠的 α-SMA、TGF-β 受体 II 表达和 SMAD2 磷酸化明显增加。总的来说,数据表明 bgn 缺乏促进了体外和体内肌成纤维细胞的分化和增殖,可能是由于对 TGF-β 和 SMAD2 信号的反应增加所致。

相似文献

1
Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype.
J Biol Chem. 2011 May 13;286(19):17365-75. doi: 10.1074/jbc.M110.192682. Epub 2011 Mar 18.
5
Role of miR-145 in cardiac myofibroblast differentiation.
J Mol Cell Cardiol. 2014 Jan;66:94-105. doi: 10.1016/j.yjmcc.2013.08.007. Epub 2013 Aug 31.
7
Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
Exp Biol Med (Maywood). 2018 Apr;243(7):601-612. doi: 10.1177/1535370218761628. Epub 2018 Mar 4.
8
Biglycan is required for adaptive remodeling after myocardial infarction.
Circulation. 2008 Mar 11;117(10):1269-76. doi: 10.1161/CIRCULATIONAHA.107.714147. Epub 2008 Feb 25.

引用本文的文献

2
Cyanidin prevents cardiomyocyte apoptosis in mice after myocardial infarction.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Aug;397(8):5883-5898. doi: 10.1007/s00210-024-02975-2. Epub 2024 Feb 13.
4
Disease- and sex-specific differences in patients with heart valve disease: a proteome study.
Life Sci Alliance. 2023 Jan 10;6(3). doi: 10.26508/lsa.202201411. Print 2023 Mar.
5
Decorin knockdown is beneficial for aged tendons in the presence of biglycan expression.
Matrix Biol Plus. 2022 Jun 24;15:100114. doi: 10.1016/j.mbplus.2022.100114. eCollection 2022 Aug.
7
Biglycan expression and its function in human ligamentum flavum.
Sci Rep. 2021 Mar 1;11(1):4867. doi: 10.1038/s41598-021-84363-x.
8
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart.
Ageing Res Rev. 2020 Nov;63:101150. doi: 10.1016/j.arr.2020.101150. Epub 2020 Aug 23.
9
10
Functional and structural studies of tolloid-like 1 mutants associated with atrial-septal defect 6.
Biosci Rep. 2019 Jan 8;39(1). doi: 10.1042/BSR20180270. Print 2019 Jan 31.

本文引用的文献

3
Small leucine-rich proteoglycans in atherosclerotic lesions: novel targets of chronic statin treatment?
J Cell Mol Med. 2011 Feb;15(2):232-43. doi: 10.1111/j.1582-4934.2009.00986.x.
5
Transcriptional and posttranscriptional regulators of biglycan in cardiac fibroblasts.
Basic Res Cardiol. 2010 Jan;105(1):99-108. doi: 10.1007/s00395-009-0049-8. Epub 2009 Aug 23.
6
Long-term treatment with the AT1-receptor antagonist telmisartan inhibits biglycan accumulation in murine atherosclerosis.
Basic Res Cardiol. 2010 Jan;105(1):29-38. doi: 10.1007/s00395-009-0051-1. Epub 2009 Aug 23.
7
Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences.
J Mol Cell Cardiol. 2010 Mar;48(3):558-63. doi: 10.1016/j.yjmcc.2009.06.012. Epub 2009 Jun 25.
8
Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan.
Am J Pathol. 2009 Jul;175(1):148-60. doi: 10.2353/ajpath.2009.080837. Epub 2009 Jun 18.
9
Cardiac fibroblasts: at the heart of myocardial remodeling.
Pharmacol Ther. 2009 Aug;123(2):255-78. doi: 10.1016/j.pharmthera.2009.05.002. Epub 2009 May 19.
10
Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scar fibroblasts.
Burns. 2009 Jun;35(4):527-37. doi: 10.1016/j.burns.2008.08.021. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验