Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA.
J Biol Chem. 2011 May 6;286(18):16402-13. doi: 10.1074/jbc.M110.205096. Epub 2011 Mar 16.
The relative activity of the AKT kinase has been demonstrated to be a major determinant of sensitivity of tumor cells to mammalian target of rapamycin (mTOR) complex 1 inhibitors. Our previous studies have shown that the multifunctional RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates a salvage pathway facilitating internal ribosome entry site (IRES)-dependent mRNA translation of critical cellular determinants in an AKT-dependent manner following mTOR inhibitor exposure. This pathway functions by stimulating IRES-dependent translation in cells with relatively quiescent AKT, resulting in resistance to rapamycin. However, the pathway is repressed in cells with elevated AKT activity, rendering them sensitive to rapamycin-induced G(1) arrest as a result of the inhibition of global eIF-4E-mediated translation. AKT phosphorylation of hnRNP A1 at serine 199 has been demonstrated to inhibit IRES-mediated translation initiation. Here we describe a phosphomimetic mutant of hnRNP A1 (S199E) that is capable of binding both the cyclin D1 and c-MYC IRES RNAs in vitro but lacks nucleic acid annealing activity, resulting in inhibition of IRES function in dicistronic mRNA reporter assays. Utilizing cells in which AKT is conditionally active, we demonstrate that overexpression of this mutant renders quiescent AKT-containing cells sensitive to rapamycin in vitro and in xenografts. We also demonstrate that activated AKT is strongly correlated with elevated Ser(P)(199)-hnRNP A1 levels in a panel of 22 glioblastomas. These data demonstrate that the phosphorylation status of hnRNP A1 serine 199 regulates the AKT-dependent sensitivity of cells to rapamycin and functionally links IRES-transacting factor annealing activity to cellular responses to mTOR complex 1 inhibition.
AKT 激酶的相对活性已被证明是肿瘤细胞对哺乳动物雷帕霉素靶蛋白(mTOR)复合物 1 抑制剂敏感性的主要决定因素。我们之前的研究表明,多功能 RNA 结合蛋白异质核核糖核蛋白(hnRNP)A1 调节一种挽救途径,该途径以 AKT 依赖性方式促进关键细胞决定因素的内部核糖体进入位点(IRES)依赖性 mRNA 翻译,从而促进 mTOR 抑制剂暴露后 IRES 依赖性翻译。该途径在 AKT 活性相对静止的细胞中通过刺激 IRES 依赖性翻译起作用,导致对雷帕霉素的耐药性。然而,该途径在 AKT 活性升高的细胞中受到抑制,导致它们对 rapamycin 诱导的 G1 期阻滞敏感,因为它抑制了全球 eIF-4E 介导的翻译。已经证明 AKT 对 hnRNP A1 丝氨酸 199 的磷酸化抑制 IRES 介导的翻译起始。在这里,我们描述了 hnRNP A1 的磷酸模拟突变体(S199E),该突变体能够在体外结合细胞周期蛋白 D1 和 c-MYC IRES RNA,但缺乏核酸退火活性,从而抑制二顺反子 mRNA 报告基因测定中的 IRES 功能。利用 AKT 条件性激活的细胞,我们证明该突变体的过表达使静止的 AKT 细胞在体外和异种移植物中对 rapamycin 敏感。我们还证明,在 22 例神经胶质瘤中,激活的 AKT 与升高的 Ser(P)(199)-hnRNP A1 水平呈强相关性。这些数据表明,hnRNP A1 丝氨酸 199 的磷酸化状态调节细胞对 rapamycin 的 AKT 依赖性敏感性,并将 IRES 转导因子退火活性与细胞对 mTOR 复合物 1 抑制的反应功能联系起来。