Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada.
Phys Med Biol. 2011 Apr 21;56(8):2617-34. doi: 10.1088/0031-9155/56/8/018. Epub 2011 Apr 1.
During experimental procedures, an adequate evaluation of all sources of uncertainty is necessary to obtain an overall uncertainty budget. In specific radiation dosimetry applications where a single detector is used, common methods to evaluate uncertainties caused by setup positioning errors are not applicable when the dose gradient is not known a priori. This study describes a method to compute these uncertainties using the Monte Carlo method. A mathematical formalism is developed to calculate unbiased estimates of the uncertainties. The method is implemented in egs_chamber, an EGSnrc-based code that allows for the efficient calculation of detector doses and dose ratios. The correct implementation of the method into the egs_chamber code is validated with an extensive series of tests. The accuracy of the developed mathematical formalism is verified by comparing egs_chamber simulation results to the theoretical expectation in an ideal situation where the uncertainty can be computed analytically. Three examples of uncertainties are considered for realistic models of an Exradin A12 ionization chamber and a PTW 60012 diode, and results are computed for parameters representing nearly realistic positioning error probability distributions. Results of practical examples show that uncertainties caused by positioning errors can be significant during IMRT reference dosimetry as well as small field output factor measurements. The method described in this paper is of interest in the study of single-detector response uncertainties during nonstandard beam measurements, both in the scope of daily routine as well as when developing new dosimetry protocols. It is pointed out that such uncertainties should be considered in new protocols devoted to single-detector measurements in regions with unpredictable dose gradients. The method is available within the egs_chamber code in the latest official release of the EGSnrc system.
在实验过程中,需要对所有不确定性源进行充分评估,以获得全面的不确定性预算。在特定的辐射剂量学应用中,当剂量梯度事先未知时,使用单个探测器的情况下,常见的评估由于设置定位误差引起的不确定性的方法是不适用的。本研究描述了一种使用蒙特卡罗方法计算这些不确定性的方法。开发了一种数学公式来计算不确定性的无偏估计。该方法在基于 EGSnrc 的 egs_chamber 代码中实现,该代码允许高效计算探测器剂量和剂量比。通过一系列广泛的测试验证了将该方法正确实现到 egs_chamber 代码中的正确性。通过将 egs_chamber 模拟结果与在不确定性可以通过分析计算的理想情况下的理论期望进行比较,验证了所开发的数学公式的准确性。对于 Exradin A12 电离室和 PTW 60012 二极管的现实模型,考虑了三个不确定性示例,并针对代表几乎现实的定位误差概率分布的参数计算了结果。实际示例的结果表明,在 IMRT 参考剂量测定以及小场输出因子测量期间,定位误差引起的不确定性可能会非常显著。本文描述的方法在非标准光束测量期间单个探测器响应不确定性的研究中很有意义,无论是在日常例行工作范围内还是在开发新的剂量学协议时。需要指出的是,在专门用于剂量梯度不可预测的区域的单个探测器测量的新协议中,应考虑到这些不确定性。该方法在 EGSnrc 系统的最新官方版本的 egs_chamber 代码中可用。