Okorafor M, Clayton G M
Department of Mechanical Engineering, Center for Nonlinear Dynamics and Control, Villanova University, Villanova, Pennsylvania 19085, USA.
Rev Sci Instrum. 2011 Mar;82(3):033707. doi: 10.1063/1.3548835.
In this paper, a novel scanning probe microscope (SPM) modeling technique is presented. The novelty of this technique is that it exploits the SPM's probe-surface interaction measurement capabilities [e.g., the topography signal in atomic force microscopy (AFM)] to determine the SPM's lateral positioning dynamics. SPM operation speed is limited due to mechanical vibrations induced by movement of the SPM nanopositioner. In order to facilitate high-speed SPM operation, the dynamics of the SPM can be modeled and used to design feedforward and feedback controllers that reduce nanopositioner vibrations. The proposed technique seeks to develop a transfer function model of the SPM dynamics using only the SPM probe-surface interaction signal obtained while scanning a calibration sample. The technique is presented in the context of an AFM example, errors associated with the method are analyzed, and the method is experimentally verified using a commercial AFM. Experimental modeling results show that the method is capable of modeling the dynamics of SPM systems.
本文提出了一种新颖的扫描探针显微镜(SPM)建模技术。该技术的新颖之处在于,它利用扫描探针显微镜的探针-表面相互作用测量能力[例如,原子力显微镜(AFM)中的形貌信号]来确定扫描探针显微镜的横向定位动力学。由于扫描探针显微镜纳米定位器的移动会引起机械振动,扫描探针显微镜的操作速度受到限制。为了促进高速扫描探针显微镜操作,可以对扫描探针显微镜的动力学进行建模,并用于设计减少纳米定位器振动的前馈和反馈控制器。所提出的技术旨在仅使用在扫描校准样品时获得的扫描探针显微镜探针-表面相互作用信号来开发扫描探针显微镜动力学的传递函数模型。该技术在原子力显微镜示例的背景下进行了介绍,分析了与该方法相关的误差,并使用商用原子力显微镜对该方法进行了实验验证。实验建模结果表明,该方法能够对扫描探针显微镜系统的动力学进行建模。