Department of Mathematics, The University of Arizona, Tucson, Arizona 85721, USA.
Chaos. 2011 Mar;21(1):013128. doi: 10.1063/1.3567009.
In this paper, we present some important findings regarding a comprehensive characterization of dynamical behavior in the vicinity of two periodically perturbed homoclinic solutions. Using the Duffing system, we illustrate that the overall dynamical behavior of the system, including strange attractors, is organized in the form of an asymptotic invariant pattern as the magnitude of the applied periodic forcing approaches zero. Moreover, this invariant pattern repeats itself with a multiplicative period with respect to the magnitude of the forcing. This multiplicative period is an explicitly known function of the system parameters. The findings from the numerical experiments are shown to be in great agreement with the theoretical expectations.
本文介绍了关于两个周期受扰同宿解附近的动力行为的全面特征化的一些重要发现。我们使用杜芬系统来说明,随着外加周期激励幅度趋近于零,系统的整体动力行为,包括奇异吸引子,以渐近不变模式组织。此外,这种不变模式相对于激励幅度以乘法周期重复自身。这个乘法周期是系统参数的一个显式已知函数。数值实验的结果表明与理论预期非常吻合。