Suppr超能文献

一种合成的螺旋卷曲相互作用组提供了用于分子工程的异源模块。

A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering.

机构信息

MIT, Department of Biology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Am Chem Soc. 2010 May 5;132(17):6025-31. doi: 10.1021/ja907617a.

Abstract

The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein "interactome" includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of special interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.

摘要

多功能的卷曲螺旋蛋白基序广泛用于诱导和控制生物学和材料科学中的大分子相互作用。然而,使用已知的卷曲螺旋可以构建的相互作用模式的类型是有限的。在这里,我们通过使用肽微阵列测量了 48 个合成卷曲螺旋和 7 个人类 bZIP 卷曲螺旋的完整成对相互作用,极大地扩展了卷曲螺旋工具包。由此产生的包含 27 对相互作用肽的 55 成员蛋白质“相互作用组”,其中包括优先异源缔合的 27 对。这 27 对可以组合使用,以组装由 3 到 6 个组成不同拓扑网络的蛋白质。特别有趣的是参与相互正交相互作用的异源肽对。这样的对为两个单独的分子系统提供了二聚化的机会,而不会产生不必要的串扰。对这两组正交异二聚体的溶液和结构特征分析提供了它们相互作用几何形状的详细信息。该正交对以及我们筛选中发现的许多其他网络基序,为合成生物学和其他应用提供了新的功能。

相似文献

1
A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering.
J Am Chem Soc. 2010 May 5;132(17):6025-31. doi: 10.1021/ja907617a.
2
Data-driven prediction and design of bZIP coiled-coil interactions.
PLoS Comput Biol. 2015 Feb 19;11(2):e1004046. doi: 10.1371/journal.pcbi.1004046. eCollection 2015 Feb.
3
Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.
Protein Sci. 2014 Jul;23(7):940-53. doi: 10.1002/pro.2477. Epub 2014 Apr 30.
5
A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit.
J Am Chem Soc. 2014 Nov 26;136(47):16544-56. doi: 10.1021/ja507847t. Epub 2014 Nov 13.
6
Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.
Handb Exp Pharmacol. 2008(186):461-82. doi: 10.1007/978-3-540-72843-6_19.
8
Heterochiral Jun and Fos bZIP peptides form a coiled-coil heterodimer that is competent for DNA binding.
J Pept Sci. 2017 Jul;23(7-8):644-649. doi: 10.1002/psc.2985. Epub 2017 Feb 10.
9
Design of protein-interaction specificity gives selective bZIP-binding peptides.
Nature. 2009 Apr 16;458(7240):859-64. doi: 10.1038/nature07885.
10
X-ray scattering indicates that the leucine zipper is a coiled coil.
Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):561-4. doi: 10.1073/pnas.88.2.561.

引用本文的文献

1
Basal association of a transcription factor favors early gene expression.
PLoS Genet. 2025 Jun 16;21(6):e1011710. doi: 10.1371/journal.pgen.1011710. eCollection 2025 Jun.
2
Regulating ferredoxin electron transfer using nanobody and antigen interactions.
RSC Chem Biol. 2025 Jan 31;6(5):746-753. doi: 10.1039/d4cb00257a. eCollection 2025 May 8.
3
Exchange, promiscuity, and orthogonality in designed coiled-coil peptide assemblies.
Chem Sci. 2024 Dec 9;16(4):1826-1836. doi: 10.1039/d4sc06329e. eCollection 2025 Jan 22.
4
Design of pseudosymmetric protein hetero-oligomers.
Nat Commun. 2024 Dec 18;15(1):10684. doi: 10.1038/s41467-024-54913-8.
6
A synthetic protein-level neural network in mammalian cells.
Science. 2024 Dec 13;386(6727):1243-1250. doi: 10.1126/science.add8468. Epub 2024 Dec 12.
7
In situ-crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention.
Bioeng Transl Med. 2024 Aug 20;9(6):e10697. doi: 10.1002/btm2.10697. eCollection 2024 Nov.
8
Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain.
Int J Mol Sci. 2024 Nov 1;25(21):11774. doi: 10.3390/ijms252111774.
9
Coiled Coil Peptide Tiles (CCPTs): Expanding the Peptide Building Block Design with Multivalent Peptide Macrocycles.
J Am Chem Soc. 2024 Nov 6;146(44):30252-30261. doi: 10.1021/jacs.4c09531. Epub 2024 Oct 25.
10
The art of designed coiled-coils for the regulation of mammalian cells.
Cell Chem Biol. 2024 Aug 15;31(8):1460-1472. doi: 10.1016/j.chembiol.2024.06.001. Epub 2024 Jul 5.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Design of protein-interaction specificity gives selective bZIP-binding peptides.
Nature. 2009 Apr 16;458(7240):859-64. doi: 10.1038/nature07885.
3
Designed alpha-helical tectons for constructing multicomponent synthetic biological systems.
J Am Chem Soc. 2009 Jan 28;131(3):928-30. doi: 10.1021/ja804231a.
4
Using alpha-helical coiled-coils to design nanostructured metalloporphyrin arrays.
J Am Chem Soc. 2008 Sep 10;130(36):11921-7. doi: 10.1021/ja800697g. Epub 2008 Aug 19.
5
Simultaneous directed assembly of three distinct heterodimeric coiled coils.
Org Lett. 2008 Sep 4;10(17):3797-800. doi: 10.1021/ol801461a. Epub 2008 Aug 12.
6
Structural specificity in coiled-coil interactions.
Curr Opin Struct Biol. 2008 Aug;18(4):477-83. doi: 10.1016/j.sbi.2008.04.008. Epub 2008 Jun 12.
7
Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics.
Science. 2008 Mar 14;319(5869):1539-43. doi: 10.1126/science.1151153.
9
Orthogonal recognition in dimeric coiled coils via buried polar-group modulation.
J Am Chem Soc. 2008 Jan 30;130(4):1321-7. doi: 10.1021/ja076265w. Epub 2008 Jan 3.
10
Engineering nanoscale order into a designed protein fiber.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10853-8. doi: 10.1073/pnas.0700801104. Epub 2007 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验