Suppr超能文献

血清素对睡眠-觉醒行为的控制。

Serotonin control of sleep-wake behavior.

机构信息

Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, Montevideo 11600, Uruguay.

出版信息

Sleep Med Rev. 2011 Aug;15(4):269-81. doi: 10.1016/j.smrv.2010.11.003. Epub 2011 Apr 2.

Abstract

Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) functions predominantly to promote wakefulness (W) and to inhibit REM (rapid eye movement) sleep (REMS). Yet, under certain circumstances the neurotransmitter contributes to the increase in sleep propensity. Most of the serotonergic innervation of the cerebral cortex, amygdala, basal forebrain (BFB), thalamus, preoptic and hypothalamic areas, raphe nuclei, locus coeruleus and pontine reticular formation comes from the dorsal raphe nucleus (DRN). The 5-HT receptors can be classified into at least seven classes, designated 5-HT(1-7). The 5-HT(1A) and 5-HT(1B) receptor subtypes are linked to the inhibition of adenylate cyclase, and their activation evokes a membrane hyperpolarization. The actions of the 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes are mediated by the activation of phospholipase C, with a resulting depolarization of the host cell. The 5-HT(3) receptor directly activates a 5-HT-gated cation channel which leads to the depolarization of monoaminergic, aminoacidergic and cholinergic cells. The primary signal transduction pathway of 5-HT(6) and 5-HT(7) receptors is the stimulation of adenylate cyclase which results in the depolarization of the follower neurons. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type counterparts, which could be related to the absence of a postsynaptic inhibitory effect on REM-on neurons of the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT). 5-HT(2A) and 5-HT(2C) receptor knock-out mice show a significant increase of W and a reduction of slow wave sleep (SWS) which has been ascribed to the increase of catecholaminergic neurotransmission involving mainly the noradrenergic and dopaminergic systems. Sleep variables have been characterized, in addition, in 5-HT(7) receptor knock-out mice; the mutants spend less time in REMS that their wild-type counterparts. Direct infusion of the 5-HT(1A) receptor agonists 8-OH-DPAT and flesinoxan into the DRN significantly enhances REMS in the rat. In contrast, microinjection of the 5-HT(1B) (CP-94253), 5-HT(2A/2C) (DOI), 5-HT(3) (m-chlorophenylbiguanide) and 5-HT(7) (LP-44) receptor agonists into the DRN induces a significant reduction of REMS. Systemic injection of full agonists at postsynaptic 5-HT(1A) (8-OH-DPAT, flesinoxan), 5-HT(1B) (CGS 12066B, CP-94235), 5-HT(2C) (RO 60-0175), 5-HT(2A/2C) (DOI, DOM), 5-HT(3) (m-chlorophenylbiguanide) and 5-HT(7) (LP-211) receptors increases W and reduces SWS and REMS. Of note, systemic administration of the 5-HT(2A/2C) receptor antagonists ritanserin, ketanserin, ICI-170,809 or sertindole at the beginning of the light period has been shown to induce a significant increase of SWS and a reduction of REMS in the rat. Wakefulness was also diminished in most of these studies. Similar effects have been described following the injection of the selective 5-HT(2A) receptor antagonists volinanserin and pruvanserin and of the 5-HT(2A) receptor inverse agonist nelotanserin in rodents. In addition, the effects of these compounds have been studied on the sleep electroencephalogram of subjects with normal sleep. Their administration was followed by an increase of SWS and, in most instances, a reduction of REMS. The administration of ritanserin to poor sleepers, patients with chronic primary insomnia and psychiatric patients with a generalized anxiety disorder or a mood disorder caused a significant increase in SWS. The 5-HT(2A) receptor inverse agonist APD-125 induced also an increase of SWS in patients with chronic primary insomnia. It is known that during the administration of benzodiazepine (BZD) hypnotics to patients with insomnia there is a further reduction of SWS and REMS, whereas both variables tend to remain decreased during the use of non-BZD derivatives (zolpidem, zopiclone, eszopiclone, zaleplon). Thus, the association of 5-HT(2A) antagonists or 5-HT(2A) inverse agonists with BZD and non-BZD hypnotics could be a valid alternative to normalize SWS in patients with primary or comorbid insomnia.

摘要

基于电生理学、神经化学、遗传学和神经药理学方法,目前人们普遍认为 5-羟色胺(5-HT)主要作用是促进觉醒(W)和抑制 REM(快速眼动)睡眠(REMS)。然而,在某些情况下,这种神经递质会增加睡眠倾向。大脑皮层、杏仁核、基底前脑(BFB)、丘脑、视前区和下丘脑、中缝核、蓝斑和桥脑网状结构的大部分 5-HT 能神经支配来自中缝背核(DRN)。5-HT 受体至少可分为 7 类,分别为 5-HT(1-7)。5-HT(1A)和 5-HT(1B)受体亚型与抑制腺苷酸环化酶有关,其激活会引起膜超极化。5-HT(2A)、5-HT(2B)和 5-HT(2C)受体亚型的作用通过激活磷脂酶 C 介导,导致宿主细胞去极化。5-HT(3)受体直接激活 5-HT 门控阳离子通道,导致单胺能、氨基酸能和胆碱能细胞去极化。5-HT(6)和 5-HT(7)受体的主要信号转导途径是刺激腺苷酸环化酶,导致后续神经元去极化。不表达 5-HT(1A)或 5-HT(1B)受体的突变小鼠比其野生型小鼠表现出更多的 REMS,这可能与 REM-on 神经元(外侧背核和脚桥被盖核)中没有突触后抑制作用有关。5-HT(2A)和 5-HT(2C)受体敲除小鼠表现出 W 的显著增加和慢波睡眠(SWS)的减少,这归因于涉及主要去甲肾上腺素能和多巴胺能系统的儿茶酚胺能神经传递的增加。5-HT(7)受体敲除小鼠的睡眠变量也已得到表征;突变体比其野生型小鼠在 REMS 中花费的时间更少。直接向 DRN 中输注 5-HT(1A)受体激动剂 8-OH-DPAT 和 flesinoxan 可显著增强大鼠的 REMS。相比之下,向 DRN 中微注射 5-HT(1B)(CP-94253)、5-HT(2A/2C)(DOI)、5-HT(3)(m-氯苯基大碱)和 5-HT(7)(LP-44)受体激动剂会导致 REMS 显著减少。全身注射突触后 5-HT(1A)(8-OH-DPAT、flesinoxan)、5-HT(1B)(CGS 12066B、CP-94235)、5-HT(2C)(RO 60-0175)、5-HT(2A/2C)(DOI、DOM)、5-HT(3)(m-氯苯基大碱)和 5-HT(7)(LP-211)受体的完全激动剂可增加 W,减少 SWS 和 REMS。值得注意的是,在光照期开始时,系统给予 5-HT(2A/2C)受体拮抗剂利坦色林、酮色林、ICI-170,809 或司特林会导致大鼠 SWS 显著增加和 REMS 减少。在这些研究中,大多数都观察到觉醒减少。在啮齿动物中,注射选择性 5-HT(2A)受体拮抗剂 volinanserin 和 pruvanserin 以及 5-HT(2A)受体反向激动剂 nelotanserin 后也描述了类似的效果。此外,还研究了这些化合物对正常睡眠受试者的睡眠脑电图的影响。它们的给药后会导致 SWS 增加,并且在大多数情况下,会导致 REMS 减少。给睡眠质量差的患者、慢性原发性失眠患者和患有广泛性焦虑症或心境障碍的精神病患者服用利坦色林会导致 SWS 显著增加。5-HT(2A)受体反向激动剂 APD-125 也会导致慢性原发性失眠患者 SWS 增加。已知在失眠患者中给予苯二氮䓬(BZD)催眠药会进一步减少 SWS 和 REMS,而在使用非 BZD 衍生物(唑吡坦、佐匹克隆、艾司佐匹克隆、扎来普隆)时,这两个变量往往会持续减少。因此,5-HT(2A)拮抗剂或 5-HT(2A)反向激动剂与 BZD 和非 BZD 催眠药的联合使用可能是纠正原发性或合并性失眠患者 SWS 的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验