Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
J Phys Condens Matter. 2011 Apr 20;23(15):153102. doi: 10.1088/0953-8984/23/15/153102. Epub 2011 Apr 1.
Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.
遗传调控网络使细胞能够通过动态协调其基因表达谱来响应内部和外部条件的变化。我们在这些生化电路中进行定量测量的能力加深了我们对遗传调控网络可以进行什么样的计算以及可靠性如何的理解。这些进展促使研究人员寻找遗传调控网络的结构和功能之间的联系。在网络的输入和输出之间传递信息被提议作为功能的一种可能度量,在某些生物学背景下具有相关性。在这里,我们总结了信息论在基因调控网络中的应用的最新进展。我们首先回顾了理解最近工作所需的信息论的基本概念。然后,我们讨论了基因调控的功能复杂性,这是由调节相互作用的分子性质引起的。最后,我们回顾了一些支持这样一种观点的实验,即负责多细胞生物早期发育的遗传网络可能正在最大化传递“位置信息”。