Suppr超能文献

Molecular species analysis of the glycosylphosphatidylinositol anchor of Torpedo marmorata acetylcholinesterase.

作者信息

Bütikofer P, Kuypers F A, Shackleton C, Brodbeck U, Stieger S

机构信息

Children's Hospital Oakland Research Institute, California 94609.

出版信息

J Biol Chem. 1990 Nov 5;265(31):18983-7.

PMID:2146267
Abstract

We analyzed the molecular species composition of the glycosylphosphatidylinositol (GPI) anchor of Torpedo marmorata acetylcholinesterase (AChE) and compared it to that of the membrane phosphatidylinositol (PI) as well as the other major phospholipid classes of T. marmorata electrocytes. Purified amphiphilic AChE was treated with PI-specific phospholipase C in order to release the diradylglycerol moiety from the membrane anchoring domain. Subsequently, the diradylglycerols were derivatized into their diradylglycer-obenzoates and separated into subclasses (diacyl, alkylacyl, and alk-1-enylacyl types). The molecular species within each subclass were separated and quantitated by high performance liquid chromatography and UV detection and directly introduced through the thermospray interface into a mass spectrometer for identification. The PI moiety of the GPI anchor of AChE consisted exclusively of diacyl molecular species. Over 85% of the molecular species were composed of palmitoyl (16:0), stearoyl (18:0), and oleoyl (18:1) fatty acyl chains in the sn-1 and sn-2 positions. Less than 5% of the molecular species of the GPI anchor contained polyunsaturated fatty acyl chains, as compared to more than 70% of the diacyl molecular species of the PI from electrocyte membranes. Since the GPI anchors of AChE from both human and bovine erythrocytes contain alkylacyl molecular species of PI (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775), our results on AChE from Torpedo demonstrate that the composition of the PI moiety of the GPI anchor of a protein is not characteristic for that protein but may vary between species.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验