Suppr超能文献

早期生物膜形成过程中鞭毛束缚细菌的物种依赖性流体动力学

Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.

作者信息

Bennett Rachel R, Lee Calvin K, De Anda Jaime, Nealson Kenneth H, Yildiz Fitnat H, O'Toole George A, Wong Gerard C L, Golestanian Ramin

机构信息

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA.

出版信息

J R Soc Interface. 2016 Feb;13(115):20150966. doi: 10.1098/rsif.2015.0966.

Abstract

Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.

摘要

表面上的单毛菌呈现出复杂的旋转运动。这种旋转运动通常是这些细胞表面脱离启动序列的一部分。为了理解旋转运动对细菌表面相互作用的影响,我们建立了一个表面附着细菌的流体动力学模型,该模型再现了我们在铜绿假单胞菌、腐败希瓦氏菌和霍乱弧菌中观察到的行为,并提供了一个详细的词典,用于将观察到的旋转行为与细菌 - 表面相互作用联系起来。我们的研究结果表明,附着在表面的鞭毛丝的比例、该附属物的旋转扭矩、鞭毛钩的柔韧性以及细菌细胞的形状决定了微生物脱离的可能性以及其在脱离过程中应具有的最佳方向。这些发现对于理解物种特异性的可逆附着非常重要,这是运动性杆状生物在浮游生物和生物膜生活方式之间的关键转变事件。

相似文献

3
Biofilms, flagella, and mechanosensing of surfaces by bacteria.细菌的生物膜、鞭毛和表面的机械感应。
Trends Microbiol. 2014 Sep;22(9):517-27. doi: 10.1016/j.tim.2014.05.002. Epub 2014 Jun 2.
7
High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.高速“4D”细菌表面运动的计算显微镜。
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.
10
Regulation of flagellar motility during biofilm formation.生物膜形成过程中鞭毛运动的调控。
FEMS Microbiol Rev. 2013 Nov;37(6):849-71. doi: 10.1111/1574-6976.12018. Epub 2013 Apr 12.

引用本文的文献

2
The bacterial flagellum as an object for optical trapping.作为光镊研究对象的细菌鞭毛。
Biophys Rev. 2024 Jul 24;16(4):403-415. doi: 10.1007/s12551-024-01212-7. eCollection 2024 Aug.
7
Motile curved bacteria are Pareto-optimal.游动弯曲细菌是帕累托最优的。
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14440-14447. doi: 10.1073/pnas.1818997116. Epub 2019 Jul 2.
8
10
High-Speed "4D" Computational Microscopy of Bacterial Surface Motility.高速“4D”细菌表面运动的计算显微镜。
ACS Nano. 2017 Sep 26;11(9):9340-9351. doi: 10.1021/acsnano.7b04738. Epub 2017 Sep 1.

本文引用的文献

3
A steering mechanism for phototaxis in Chlamydomonas.衣藻趋光性的转向机制。
J R Soc Interface. 2015 Mar 6;12(104):20141164. doi: 10.1098/rsif.2014.1164.
6
Failed escape: solid surfaces prevent tumbling of Escherichia coli.逃逸失败:固体表面阻止大肠杆菌翻滚。
Phys Rev Lett. 2014 Aug 8;113(6):068103. doi: 10.1103/PhysRevLett.113.068103. Epub 2014 Aug 7.
7
Bacterial flagella explore microscale hummocks and hollows to increase adhesion.细菌鞭毛探测微尺度的凸起和凹陷以增加附着力。
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5624-9. doi: 10.1073/pnas.1219662110. Epub 2013 Mar 18.
8
Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering.细菌细胞间和细胞表面散射中的流体力和噪声。
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10940-5. doi: 10.1073/pnas.1019079108. Epub 2011 Jun 20.
10
Hydrodynamic entrapment of bacteria swimming near a solid surface.细菌在固体表面附近游动时的流体动力学捕获。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056309. doi: 10.1103/PhysRevE.82.056309. Epub 2010 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验