Bennett Rachel R, Lee Calvin K, De Anda Jaime, Nealson Kenneth H, Yildiz Fitnat H, O'Toole George A, Wong Gerard C L, Golestanian Ramin
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA.
J R Soc Interface. 2016 Feb;13(115):20150966. doi: 10.1098/rsif.2015.0966.
Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.
表面上的单毛菌呈现出复杂的旋转运动。这种旋转运动通常是这些细胞表面脱离启动序列的一部分。为了理解旋转运动对细菌表面相互作用的影响,我们建立了一个表面附着细菌的流体动力学模型,该模型再现了我们在铜绿假单胞菌、腐败希瓦氏菌和霍乱弧菌中观察到的行为,并提供了一个详细的词典,用于将观察到的旋转行为与细菌 - 表面相互作用联系起来。我们的研究结果表明,附着在表面的鞭毛丝的比例、该附属物的旋转扭矩、鞭毛钩的柔韧性以及细菌细胞的形状决定了微生物脱离的可能性以及其在脱离过程中应具有的最佳方向。这些发现对于理解物种特异性的可逆附着非常重要,这是运动性杆状生物在浮游生物和生物膜生活方式之间的关键转变事件。