Suppr超能文献

通过单细胞跟踪技术揭示细菌-哺乳动物细胞相互作用。

Uncovering bacterial-mammalian cell interactions via single-cell tracking.

机构信息

William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.

出版信息

BMC Biol. 2024 Nov 11;22(1):256. doi: 10.1186/s12915-024-02056-z.

Abstract

BACKGROUND

The interactions between bacterial pathogens and host cells are characterized by a multitude of complexities, leading to a wide range of heterogeneous outcomes. Despite extensive research, we still have a limited understanding of how bacterial motility in complex environments impacts their ability to tolerate antibiotics and adhere to mammalian cell surfaces. The challenge lies in unraveling the complexity of these interactions and developing quantitative microscopy approaches to predict the behavior of bacterial populations.

RESULTS

To address this challenge, we directed our efforts towards Pseudomonas aeruginosa, a pathogenic bacterium known for producing thick films in the lungs of cystic fibrosis patients, and Escherichia coli, used as a proof of concept to develop and demonstrate our single-cell tracking approaches. Our results revealed that P. aeruginosa exhibits diverse and complex interactions on mammalian cell surfaces, such as adhesion, rotational motion, and swimming, unlike the less interactive behavior of Escherichia coli. Our analysis indicated that P. aeruginosa demonstrated lower mean-squared displacement (MSD) values and greater adherence to mammalian cells compared to E. coli, which showed higher MSD slopes and less frequent adherence. Genetic mutations in membrane proteins of P. aeruginosa resulted in altered displacement patterns and reduced adhesion, with the ΔfliD mutant displaying a more Gaussian displacement distribution and significantly less adherence to mammalian cells. Adhesion and tolerance mechanisms are diverse and complex, potentially involving distinct pathways; however, our findings highlight the therapeutic potential of targeting the fliD gene (encoding a critical flagellum protein), as its deletion not only reduced adherence but also antibiotic tolerance.

CONCLUSIONS

Overall, our findings underscore the importance of single cell tracking in accurately assessing bacterial behavior over short time periods and highlight its significant potential in guiding effective intervention strategies.

摘要

背景

细菌病原体与宿主细胞之间的相互作用具有多种复杂性,导致了广泛的异质结果。尽管进行了广泛的研究,但我们仍然有限地了解细菌在复杂环境中的运动能力如何影响它们对抗生素的耐受能力和黏附哺乳动物细胞表面的能力。挑战在于揭示这些相互作用的复杂性,并开发定量显微镜方法来预测细菌群体的行为。

结果

为了解决这个挑战,我们专注于铜绿假单胞菌,这是一种在囊性纤维化患者肺部产生厚膜的病原体细菌,以及用作概念验证来开发和展示我们单细胞跟踪方法的大肠杆菌。我们的结果表明,铜绿假单胞菌在哺乳动物细胞表面表现出多样化和复杂的相互作用,例如黏附、旋转运动和游泳,而不像大肠杆菌那样互动性较弱。我们的分析表明,与大肠杆菌相比,铜绿假单胞菌的均方根位移(MSD)值较低,对哺乳动物细胞的黏附性较强,而大肠杆菌的 MSD 斜率较高,黏附性较不频繁。铜绿假单胞菌膜蛋白的基因突变导致位移模式发生改变和黏附减少,ΔfliD 突变体显示出更高斯的位移分布,对哺乳动物细胞的黏附性显著降低。黏附与耐受机制多样且复杂,可能涉及不同的途径;然而,我们的研究结果强调了靶向 fliD 基因(编码关键鞭毛蛋白)的治疗潜力,因为其缺失不仅减少了黏附,还降低了抗生素耐受性。

结论

总体而言,我们的研究结果强调了单细胞跟踪在准确评估细菌在短时间内的行为方面的重要性,并突出了其在指导有效干预策略方面的重要潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e2/11552363/d3884a2ae7a8/12915_2024_2056_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验