Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.
Biophys J. 2011 Apr 6;100(7):1737-46. doi: 10.1016/j.bpj.2011.02.028.
The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc2(+)), truncated N-terminal extension (Dmlc2(Δ2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)), and dual mutant (Dmlc2(Δ2-46; S66A,S67A)). The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca(2+)-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force production, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation.
肌球蛋白调节轻链(RLC)的 N 端延伸和磷酸化可独立提高果蝇的飞行性能。在这里,我们研究了四个转基因果蝇系(挽救性 null 或对照(Dmlc2(+))、截断 N 端延伸(Dmlc2(Δ2-46))、破坏肌球蛋白轻链激酶磷酸化位点(Dmlc2(S66A,S67A))和双突变体(Dmlc2(Δ2-46; S66A,S67A))的化学剥皮纤维在各种粗丝和细丝晶格间距下的 RLC 的功能和结构作用。N 端延伸截断和磷酸化位点破坏突变降低了在最大 Ca2+激活纤维中压缩到接近体内粗丝间间距时的振荡功率输出和最大功率输出频率,其中磷酸化位点破坏突变的影响更大。由于强结合的交联桥数量和肌球蛋白力产生的速率减少,N 端延伸截断和磷酸化位点破坏突变导致功率输出参数降低,磷酸化位点破坏突变中的更大参数降低还与肌球蛋白附着时间减少有关。交联桥动力学的磷酸化和 N 端延伸依赖性增强与先前的结构数据一致,这些数据表明这些 RLC 属性在向肌动蛋白靶位移动和定向肌球蛋白头部方面发挥互补作用,从而增加纤维和整个果蝇的发电能力。