Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
Am J Physiol Cell Physiol. 2011 Aug;301(2):C383-91. doi: 10.1152/ajpcell.00016.2011. Epub 2011 May 18.
The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln(ΔC44)). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln(ΔC44) line compared with control, a transgenic flightin-null rescued line (fln(+)). fln(ΔC44) fibers produced roughly 1/3 the oscillatory work and power of fln(+), with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln(ΔC44) fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln(ΔC44) flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.
昆虫的间接飞行肌 (IFM) 的特点是近乎结晶的肌丝晶格结构,这种结构可能是为了实现高功率输出而进化而来的。在果蝇 IFM 中,肌球蛋白杆结合蛋白 flightin 在厚丝组织和肌节完整性方面起着至关重要的作用。在这里,我们使用表达缺乏 44 个 COOH 末端氨基酸的截断 flightin 的转基因果蝇来研究 flightin 的 COOH 末端在 IFM 结构和机械性能中的贡献程度(fln(ΔC44))。电子显微镜和 X 射线衍射测量显示,与对照相比,fln(ΔC44)系中的肌丝晶格有序性降低,这是一种转基因 flightin 缺失的拯救系(fln(+))。fln(ΔC44)纤维产生的振荡功和功率约为 fln(+))的 1/3,最大功的频率降低(123 Hz 对 154 Hz)和功率(139 Hz 对 187 Hz)输出,表明肌球蛋白循环动力学较慢。这些功和功率的降低源于 fln(ΔC44)纤维中交叉桥募集的速度较慢和交叉桥结合减少,尽管两条线之间的平均交联附着持续时间没有差异。晶格有序性和肌球蛋白动力学的降低导致 fln(ΔC44) 果蝇无法拍打翅膀。这些结果表明 flightin 的 COOH 末端对于正常的肌丝晶格组织是必要的,从而促进了实现高飞行功率所需的交叉桥结合。