Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Biophys J. 2011 Apr 6;100(7):1756-64. doi: 10.1016/j.bpj.2011.02.017.
During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity-a mechanical paradigm that may be important throughout the spindle.
在细胞分裂过程中,染色体必须准确分离以维持基因组完整性,而这一动态的力学过程是由有丝分裂纺锤体的大分子机器驱动的。然而,人们对纺锤体的力学特性知之甚少。例如,纺锤体微管由许多交联蛋白组织,但这些交联的力学特性仍未被探索。为了研究微管交联的力学特性,我们应用光阱技术研究了在哺乳动物有丝分裂提取物中形成的有丝分裂星状体。这些星状体是微管、马达和微管相关蛋白的焦点,反映了纺锤体极的许多功能特性,代表了中心体独立的纺锤体极模拟物。我们观察到双向马达驱动的微管运动,表明星状体内的微管连接具有显著的柔顺性(平均刚度为 0.025 pN/nm),并且仅由少数几个交联介导。耗尽马达 Eg5 会降低这种刚度,表明 Eg5 通过与细胞中纺锤体极的定位一致的方式,有助于微管星状体的力学特性。我们提出,微管之间的柔顺连接提供了一种机械结构,能够适应微管运动,并在不损失极完整性的情况下在微管之间分配力——这一力学范式可能在整个纺锤体中都很重要。