Suppr超能文献

有丝分裂星状体中纺锤极的力学研究:通过顺应性连接实现纺锤力的动态分布。

Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Biophys J. 2011 Apr 6;100(7):1756-64. doi: 10.1016/j.bpj.2011.02.017.

Abstract

During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity-a mechanical paradigm that may be important throughout the spindle.

摘要

在细胞分裂过程中,染色体必须准确分离以维持基因组完整性,而这一动态的力学过程是由有丝分裂纺锤体的大分子机器驱动的。然而,人们对纺锤体的力学特性知之甚少。例如,纺锤体微管由许多交联蛋白组织,但这些交联的力学特性仍未被探索。为了研究微管交联的力学特性,我们应用光阱技术研究了在哺乳动物有丝分裂提取物中形成的有丝分裂星状体。这些星状体是微管、马达和微管相关蛋白的焦点,反映了纺锤体极的许多功能特性,代表了中心体独立的纺锤体极模拟物。我们观察到双向马达驱动的微管运动,表明星状体内的微管连接具有显著的柔顺性(平均刚度为 0.025 pN/nm),并且仅由少数几个交联介导。耗尽马达 Eg5 会降低这种刚度,表明 Eg5 通过与细胞中纺锤体极的定位一致的方式,有助于微管星状体的力学特性。我们提出,微管之间的柔顺连接提供了一种机械结构,能够适应微管运动,并在不损失极完整性的情况下在微管之间分配力——这一力学范式可能在整个纺锤体中都很重要。

相似文献

5
NuMA is a component of an insoluble matrix at mitotic spindle poles.核有丝分裂器蛋白是有丝分裂纺锤体极处不溶性基质的一个组成部分。
Cell Motil Cytoskeleton. 1999;42(3):189-203. doi: 10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X.
6
Direct measurement of the strength of microtubule attachment to yeast centrosomes.直接测量微管与酵母中心体附着的强度。
Mol Biol Cell. 2017 Jul 7;28(14):1853-1861. doi: 10.1091/mbc.E17-01-0034. Epub 2017 Mar 22.
10
Multiple mechanisms regulate NuMA dynamics at spindle poles.多种机制调节纺锤体极处的NuMA动力学。
J Cell Sci. 2004 Dec 15;117(Pt 26):6391-400. doi: 10.1242/jcs.01568. Epub 2004 Nov 23.

引用本文的文献

1
The Mechanics of Mitotic Cell Rounding.有丝分裂细胞变圆的机制。
Front Cell Dev Biol. 2020 Aug 6;8:687. doi: 10.3389/fcell.2020.00687. eCollection 2020.
3
The Spindle: Integrating Architecture and Mechanics across Scales.纺锤体:跨尺度整合架构与力学。
Trends Cell Biol. 2018 Nov;28(11):896-910. doi: 10.1016/j.tcb.2018.07.003. Epub 2018 Aug 6.
4
Mechanical properties of spindle poles are symmetrically balanced.纺锤体极的机械性能呈对称平衡。
Biophys Physicobiol. 2017 Jan 24;14:1-11. doi: 10.2142/biophysico.14.0_1. eCollection 2017.
5
Inducible fluorescent speckle microscopy.诱导荧光斑点显微镜术
J Cell Biol. 2016 Jan 18;212(2):245-55. doi: 10.1083/jcb.201506128.
6
Force on spindle microtubule minus ends moves chromosomes.纺锤体微管负端的力使染色体移动。
J Cell Biol. 2014 Jul 21;206(2):245-56. doi: 10.1083/jcb.201401091. Epub 2014 Jul 14.
9
Biophysics of mitosis.有丝分裂的生物物理学。
Q Rev Biophys. 2012 May;45(2):147-207. doi: 10.1017/S0033583512000017. Epub 2012 Feb 10.

本文引用的文献

10
Microtubule assembly dynamics at the nanoscale.纳米尺度下的微管组装动力学
Curr Biol. 2007 Sep 4;17(17):1445-55. doi: 10.1016/j.cub.2007.07.011. Epub 2007 Aug 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验