Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally.
Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally.
Trends Cell Biol. 2018 Nov;28(11):896-910. doi: 10.1016/j.tcb.2018.07.003. Epub 2018 Aug 6.
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
纺锤体在细胞分裂时分离染色体,其任务是一项机械任务。虽然我们已经几乎完整地列出了纺锤体的组成部分,但它们的分子尺度力学如何导致细胞尺度的纺锤体结构、力学和功能尚不清楚。最近的体外和体内测量带来了新的分子和物理控制水平,并为这个问题提供了线索。本文重点介绍了纺锤体的分子力发生器,并讨论了它们如何将微管组织成不同的结构模块,并产生哺乳动物纺锤体的新兴力学特性。在整个过程中,我们强调了发挥作用的空间和时间尺度的广泛性,以及纺锤体结构、动力学和力学之间的反馈,这种反馈推动了强大的功能。