Goodwin E B, Leinwand L A, Szent-Györgyi A G
Department of Biology, Brandeis University, Waltham, MA 02254.
J Mol Biol. 1990 Nov 5;216(1):85-93. doi: 10.1016/S0022-2836(05)80062-2.
Scallop adductor myosin is regulated by its subunits; the regulatory light chain (R-LC) and essential light chain (E-LC). Myosin light chains suppress muscle activity in the absence of calcium and are responsible for relaxation. The binding of Ca2+ to the myosin triggers contraction by releasing the inhibition imposed on myosin by the light chains. To map the functional domains of the R-LC, we have carried out mutagenesis followed by bacterial expression. Both wild-type and mutant proteins were hybridized to scallop myosin heavy chain/E-LC to map the regions of the light chain that are responsible for the binding to the myosin heavy chain/E-LC, for restoring the specific calcium-binding site, and controlling the myosin ATPase activity. The R-LC is expressed in Escherichia coli using the pKK223-3 (Pharmacia) expression vector and has been purified to greater than 90% purity. E. coli-expressed wild-type R-LC differs from the native R-LC by having the initiating methionine residue and an unblocked NH2 terminus. The wild-type R-LC restores Ca2+ binding and Ca2+ sensitivity when hybridized to scallop myosin. A point mutation of the sixth Ca2(+)-liganding position of domain I (Asp39----Ala39) results in a R-LC that binds more weakly to the heavy chain/E-LC and restores the specific Ca2(+)-binding site but not regulation of the actin-activated Mg2+ ATPase. A second mutation was produced by substituting the last 11 residues of the COOH terminus with 15 different residues. This mutant restores the specific Ca2(+)-binding site, but does not restore Ca2+ regulation to the actin-activated ATPase activity. Several other point mutations do not alter light chain function. The experiments directly establish that the divalent cation-binding site of domain I is functionally distinct from the specific Ca2(+)-binding site. The results indicate that an intact domain I and the COOH terminus are required to suppress the myosin ATPase activity. The fact that the domain I mutation and the COOH-terminal mutation disrupt regulation but do not affect Ca2(+)-binding indicates that these two aspects of regulation are separable and, therefore, the R-LC has distinct functional regions.
扇贝闭壳肌肌球蛋白受其亚基调节,即调节轻链(R-LC)和必需轻链(E-LC)。肌球蛋白轻链在没有钙的情况下抑制肌肉活动,并负责肌肉松弛。Ca2+与肌球蛋白结合,通过解除轻链对肌球蛋白的抑制作用来触发收缩。为了绘制R-LC的功能结构域,我们进行了诱变,随后进行细菌表达。将野生型和突变型蛋白与扇贝肌球蛋白重链/E-LC杂交,以确定轻链中负责与肌球蛋白重链/E-LC结合、恢复特定钙结合位点以及控制肌球蛋白ATP酶活性的区域。使用pKK223-3(Pharmacia)表达载体在大肠杆菌中表达R-LC,并已纯化至纯度大于90%。大肠杆菌表达的野生型R-LC与天然R-LC的不同之处在于具有起始甲硫氨酸残基和未封闭的NH2末端。野生型R-LC与扇贝肌球蛋白杂交时可恢复Ca2+结合和Ca2+敏感性。结构域I的第六个Ca2(+)-配位位置的点突变(Asp39----Ala39)导致R-LC与重链/E-LC的结合更弱,并恢复特定的Ca2(+)-结合位点,但不能调节肌动蛋白激活的Mg2+ATP酶。通过用15个不同的残基取代COOH末端的最后11个残基产生了第二个突变。该突变体恢复了特定的Ca2(+)-结合位点,但没有恢复对肌动蛋白激活的ATP酶活性的Ca2+调节。其他几个点突变不会改变轻链功能。这些实验直接证明结构域I的二价阳离子结合位点在功能上与特定的Ca2(+)-结合位点不同。结果表明,完整的结构域I和COOH末端是抑制肌球蛋白ATP酶活性所必需的。结构域I突变和COOH末端突变破坏调节但不影响Ca2(+)-结合这一事实表明,调节的这两个方面是可分离的,因此,R-LC具有不同的功能区域。