Suppr超能文献

一种新的方法来估计全基因组关联研究中表型变异的解释程度,揭示了大量遗传缺失的部分。

Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability.

机构信息

Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.

出版信息

Genet Epidemiol. 2011 Jul;35(5):341-9. doi: 10.1002/gepi.20582. Epub 2011 Apr 4.

Abstract

Genome-wide association studies (GWAS) are conducted with the promise to discover novel genetic variants associated with diverse traits. For most traits, associated markers individually explain just a modest fraction of the phenotypic variation, but their number can well be in the hundreds. We developed a maximum likelihood method that allows us to infer the distribution of associated variants even when many of them were missed by chance. Compared to previous approaches, the novelty of our method is that it (a) does not require having an independent (unbiased) estimate of the effect sizes; (b) makes use of the complete distribution of P-values while allowing for the false discovery rate; (c) takes into account allelic heterogeneity and the SNP pruning strategy. We applied our method to the latest GWAS meta-analysis results of the GIANT consortium. It revealed that while the explained variance of genome-wide (GW) significant SNPs is around 1% for waist-hip ratio (WHR), the observed P-values provide evidence for the existence of variants explaining 10% (CI=[8.5-11.5%]) of the phenotypic variance in total. Similarly, the total explained variance likely to exist for height is estimated to be 29% (CI=[28-30%]), three times higher than what the observed GW significant SNPs give rise to. This methodology also enables us to predict the benefit of future GWA studies that aim to reveal more associated genetic markers via increased sample size.

摘要

全基因组关联研究(GWAS)有望发现与多种性状相关的新型遗传变异。对于大多数性状,相关标记物各自仅能解释表型变异的一小部分,但它们的数量可能多达数百个。我们开发了一种最大似然法,即使许多相关变异偶然被遗漏,也能推断出相关变异的分布。与之前的方法相比,我们方法的新颖之处在于:(a) 不需要对效应大小进行独立(无偏)估计;(b) 在允许错误发现率的情况下利用完整的 P 值分布;(c) 考虑等位基因异质性和 SNP 修剪策略。我们将我们的方法应用于 GIANT 联盟最新的 GWAS 荟萃分析结果。结果表明,尽管全基因组(GW)显著 SNP 解释的方差约为腰围臀围比(WHR)的 1%,但观察到的 P 值表明存在解释总表型变异 10%(CI=[8.5-11.5%])的变异。同样,身高的总解释方差可能存在 29%(CI=[28-30%]),是观察到的 GW 显著 SNP 导致的三倍。该方法还使我们能够预测未来 GWA 研究的收益,这些研究旨在通过增加样本量来揭示更多相关的遗传标记。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验