Sun Hong, Chen Yunqin, Ma Liangxiao
Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, School of Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, 200237, China.
BioData Min. 2024 Oct 8;17(1):39. doi: 10.1186/s13040-024-00392-y.
Modifiers significantly impact disease phenotypes by modulating the effects of disease-causing variants, resulting in varying disease manifestations among individuals. However, identifying genetic interactions between modifier and disease-causing variants is challenging.
We developed MDVarP, an ensemble model comprising 1000 random forest predictors, to identify modifier ~ disease-causing variant combinations. MDVarP achieves high accuracy and precision, as verified using an independent dataset with published evidence of genetic interactions. We identified 25 novel modifier ~ disease-causing variant combinations and obtained supporting evidence for these associations. MDVarP outputs a class label ("Associated-pair" or "Nonrelevant-pair") and two prediction scores indicating the probability of a true association.
MDVarP prioritizes variant pairs associated with phenotypic modulations, enabling more effective mapping of functional contributions from disease-causing and modifier variants. This framework interprets genetic interactions underlying phenotypic variations in human diseases, with potential applications in personalized medicine and disease prevention.
修饰基因通过调节致病变异的效应显著影响疾病表型,导致个体间疾病表现各异。然而,识别修饰基因与致病变异之间的基因相互作用具有挑战性。
我们开发了MDVarP,这是一个由1000个随机森林预测器组成的集成模型,用于识别修饰基因致病变异组合。MDVarP具有很高的准确性和精确性,这在一个具有已发表基因相互作用证据的独立数据集中得到了验证。我们识别出25种新的修饰基因致病变异组合,并获得了这些关联的支持证据。MDVarP输出一个类别标签(“相关对”或“不相关对”)以及两个预测分数,表明真实关联的概率。
MDVarP对与表型调节相关的变异对进行优先级排序,能够更有效地描绘致病变异和修饰基因变异的功能贡献。该框架解释了人类疾病表型变异背后的基因相互作用,在个性化医疗和疾病预防方面具有潜在应用价值。