Suppr超能文献

MDVarP:修饰因子~致病变异对预测器。

MDVarP: modifier ~ disease-causing variant pairs predictor.

作者信息

Sun Hong, Chen Yunqin, Ma Liangxiao

机构信息

Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, School of Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.

Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, 200237, China.

出版信息

BioData Min. 2024 Oct 8;17(1):39. doi: 10.1186/s13040-024-00392-y.

Abstract

BACKGROUND

Modifiers significantly impact disease phenotypes by modulating the effects of disease-causing variants, resulting in varying disease manifestations among individuals. However, identifying genetic interactions between modifier and disease-causing variants is challenging.

RESULTS

We developed MDVarP, an ensemble model comprising 1000 random forest predictors, to identify modifier ~ disease-causing variant combinations. MDVarP achieves high accuracy and precision, as verified using an independent dataset with published evidence of genetic interactions. We identified 25 novel modifier ~ disease-causing variant combinations and obtained supporting evidence for these associations. MDVarP outputs a class label ("Associated-pair" or "Nonrelevant-pair") and two prediction scores indicating the probability of a true association.

CONCLUSIONS

MDVarP prioritizes variant pairs associated with phenotypic modulations, enabling more effective mapping of functional contributions from disease-causing and modifier variants. This framework interprets genetic interactions underlying phenotypic variations in human diseases, with potential applications in personalized medicine and disease prevention.

摘要

背景

修饰基因通过调节致病变异的效应显著影响疾病表型,导致个体间疾病表现各异。然而,识别修饰基因与致病变异之间的基因相互作用具有挑战性。

结果

我们开发了MDVarP,这是一个由1000个随机森林预测器组成的集成模型,用于识别修饰基因致病变异组合。MDVarP具有很高的准确性和精确性,这在一个具有已发表基因相互作用证据的独立数据集中得到了验证。我们识别出25种新的修饰基因致病变异组合,并获得了这些关联的支持证据。MDVarP输出一个类别标签(“相关对”或“不相关对”)以及两个预测分数,表明真实关联的概率。

结论

MDVarP对与表型调节相关的变异对进行优先级排序,能够更有效地描绘致病变异和修饰基因变异的功能贡献。该框架解释了人类疾病表型变异背后的基因相互作用,在个性化医疗和疾病预防方面具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6109/11460193/453faa8f69e2/13040_2024_392_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验