Belmont A S, Hu Y, Sinclair P B, Wu W, Bian Q, Kireev I
Department of Cell and Developmental Biology and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA.
Cold Spring Harb Symp Quant Biol. 2010;75:453-60. doi: 10.1101/sqb.2010.75.050. Epub 2011 Apr 5.
How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions that preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10-nm and 30-nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within severalfold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to 1000-fold relative to B-form DNA. However, transcriptional induction is accompanied by a severalfold decondensation of this large-scale chromatin structure that propagates hundreds of kilobases beyond the induced gene. Examination of engineered chromosome regions in mouse embryonic stem cells (ESCs) and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene-specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture.
多年来,染色质如何折叠形成有丝分裂染色体和间期染色体一直是个难题。我们利用了三代工程改造的染色体区域,以此来可视化活细胞以及在能保留大规模染色质结构的条件下固定的细胞中的特定染色体区域。我们的结果证实了大规模染色质结构域和纤维的存在,这些结构域和纤维是由10纳米和30纳米的染色质纤维折叠成更大的、空间上不同的结构域而形成的。在内源基因座测量水平的几倍范围内的转录发生在这些大规模染色质结构中,其模板是相对于B型DNA线性压缩了几百倍至1000倍的浓缩模板。然而,转录诱导伴随着这种大规模染色质结构的几倍程度的解聚,这种解聚会延伸到诱导基因之外数百千碱基处。对小鼠胚胎干细胞(ESC)和分化细胞中工程改造的染色体区域的研究表明,这种大规模染色质结构具有惊人的可塑性,允许在大规模染色质纤维的背景下进行长距离DNA相互作用。利用这些工程改造的染色体区域重现大规模染色质构象和核定位中的基因特异性差异,将有助于识别间期染色体结构的顺式和反式决定因素。