Suppr超能文献

通过对工程化染色体区域的分析深入了解间期大规模染色质结构

Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.

作者信息

Belmont A S, Hu Y, Sinclair P B, Wu W, Bian Q, Kireev I

机构信息

Department of Cell and Developmental Biology and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2010;75:453-60. doi: 10.1101/sqb.2010.75.050. Epub 2011 Apr 5.

Abstract

How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions that preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10-nm and 30-nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within severalfold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to 1000-fold relative to B-form DNA. However, transcriptional induction is accompanied by a severalfold decondensation of this large-scale chromatin structure that propagates hundreds of kilobases beyond the induced gene. Examination of engineered chromosome regions in mouse embryonic stem cells (ESCs) and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene-specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture.

摘要

多年来,染色质如何折叠形成有丝分裂染色体和间期染色体一直是个难题。我们利用了三代工程改造的染色体区域,以此来可视化活细胞以及在能保留大规模染色质结构的条件下固定的细胞中的特定染色体区域。我们的结果证实了大规模染色质结构域和纤维的存在,这些结构域和纤维是由10纳米和30纳米的染色质纤维折叠成更大的、空间上不同的结构域而形成的。在内源基因座测量水平的几倍范围内的转录发生在这些大规模染色质结构中,其模板是相对于B型DNA线性压缩了几百倍至1000倍的浓缩模板。然而,转录诱导伴随着这种大规模染色质结构的几倍程度的解聚,这种解聚会延伸到诱导基因之外数百千碱基处。对小鼠胚胎干细胞(ESC)和分化细胞中工程改造的染色体区域的研究表明,这种大规模染色质结构具有惊人的可塑性,允许在大规模染色质纤维的背景下进行长距离DNA相互作用。利用这些工程改造的染色体区域重现大规模染色质构象和核定位中的基因特异性差异,将有助于识别间期染色体结构的顺式和反式决定因素。

相似文献

1
Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.
Cold Spring Harb Symp Quant Biol. 2010;75:453-60. doi: 10.1101/sqb.2010.75.050. Epub 2011 Apr 5.
4
Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template.
J Cell Biol. 2009 Apr 6;185(1):87-100. doi: 10.1083/jcb.200809196.
6
Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.
Curr Biol. 2016 Sep 26;26(18):2527-2534. doi: 10.1016/j.cub.2016.07.020. Epub 2016 Aug 25.
7
Chromosome Architecture and Genome Organization.
PLoS One. 2015 Nov 30;10(11):e0143739. doi: 10.1371/journal.pone.0143739. eCollection 2015.
8
A view of interphase chromosomes.
Science. 1990 Dec 14;250(4987):1533-40. doi: 10.1126/science.2274784.
9
New insight into the mitotic chromosome structure: irregular folding of nucleosome fibers without 30-nm chromatin structure.
Cold Spring Harb Symp Quant Biol. 2010;75:439-44. doi: 10.1101/sqb.2010.75.034. Epub 2011 Mar 29.

引用本文的文献

1
Fiber-Like Organization as a Basic Principle for Euchromatin Higher-Order Structure.
Front Cell Dev Biol. 2022 Jan 31;9:784440. doi: 10.3389/fcell.2021.784440. eCollection 2021.
2
Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane.
PLoS Pathog. 2021 Dec 15;17(12):e1010132. doi: 10.1371/journal.ppat.1010132. eCollection 2021 Dec.
3
Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.
Curr Biol. 2016 Sep 26;26(18):2527-2534. doi: 10.1016/j.cub.2016.07.020. Epub 2016 Aug 25.
4
A spotlight on chromatin choreography.
J Cell Biol. 2015 Jul 20;210(2):176. doi: 10.1083/jcb.2102fta.
5
Unraveling the 3D genome: genomics tools for multiscale exploration.
Trends Genet. 2015 Jul;31(7):357-72. doi: 10.1016/j.tig.2015.03.010. Epub 2015 Apr 14.
8
Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding.
Epigenetics. 2014 May;9(5):653-7. doi: 10.4161/epi.28297. Epub 2014 Feb 21.
9
Large-scale chromatin organization: the good, the surprising, and the still perplexing.
Curr Opin Cell Biol. 2014 Feb;26:69-78. doi: 10.1016/j.ceb.2013.10.002. Epub 2013 Nov 13.
10
β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications.
J Cell Biol. 2013 Dec 9;203(5):767-83. doi: 10.1083/jcb.201305027. Epub 2013 Dec 2.

本文引用的文献

1
Hsp70 gene association with nuclear speckles is Hsp70 promoter specific.
J Cell Biol. 2010 Nov 15;191(4):711-9. doi: 10.1083/jcb.201004041. Epub 2010 Nov 8.
3
The yin and yang of chromatin spatial organization.
Genome Biol. 2010;11(3):204. doi: 10.1186/gb-2010-11-3-204. Epub 2010 Mar 29.
4
Interchromosomal association and gene regulation in trans.
Trends Genet. 2010 Apr;26(4):188-97. doi: 10.1016/j.tig.2010.01.007. Epub 2010 Mar 16.
5
Chromatin remodelling during development.
Nature. 2010 Jan 28;463(7280):474-84. doi: 10.1038/nature08911.
6
Histones: annotating chromatin.
Annu Rev Genet. 2009;43:559-99. doi: 10.1146/annurev.genet.032608.103928.
7
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.
8
The logic of chromatin architecture and remodelling at promoters.
Nature. 2009 Sep 10;461(7261):193-8. doi: 10.1038/nature08450.
9
Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template.
J Cell Biol. 2009 Apr 6;185(1):87-100. doi: 10.1083/jcb.200809196.
10
Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids.
Biophys J. 2009 Feb 18;96(4):1617-28. doi: 10.1016/j.bpj.2008.10.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验