Suppr超能文献

有丝分裂染色体结构:姐妹染色单体间折叠和对称性的可重复性

Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids.

作者信息

Strukov Yuri G, Belmont A S

机构信息

Biophysics Program, University of Illinois, Urbana-Champaign, Illinois, USA.

出版信息

Biophys J. 2009 Feb 18;96(4):1617-28. doi: 10.1016/j.bpj.2008.10.051.

Abstract

Mitotic chromosome structure and pathways of mitotic condensation remain unknown. The limited amount of structural data on mitotic chromosome structure makes it impossible to distinguish between several mutually conflicting models. Here we used a Chinese hamster ovary cell line with three different lac operator-tagged vector insertions distributed over an approximately 1 microm chromosome arm region to determine positioning reproducibility, long-range correlation in large-scale chromatin folding, and sister chromatid symmetry in minimally perturbed, metaphase chromosomes. The three-dimensional positions of these lac operator-tagged spots, stained with lac repressor, were measured in isolated metaphase chromosomes relative to the central chromatid axes labeled with antibodies to topoisomerase II. Longitudinal, but not axial, positioning of spots was reproducible but showed intrinsic variability, up to approximately 300 nm, between sister chromatids. Spot positions on the same chromatid were uncorrelated, and no correlation or symmetry between the positions of corresponding spots on sister chromatids was detectable, showing the absence of highly ordered, long-range chromatin folding over tens of mega-basepairs. Our observations are in agreement with the absence of any regular, reproducible helical, last level of chromosome folding, but remain consistent with any hierarchical folding model in which irregularity in folding exists at one or multiple levels.

摘要

有丝分裂染色体的结构以及有丝分裂凝聚的途径仍然未知。关于有丝分裂染色体结构的有限结构数据,使得区分几种相互冲突的模型变得不可能。在这里,我们使用了一种中国仓鼠卵巢细胞系,其有三个不同的带有乳糖操纵子标签的载体插入片段,分布在大约1微米的染色体臂区域,来确定定位的可重复性、大规模染色质折叠中的长程相关性以及在微扰的中期染色体中的姐妹染色单体对称性。用乳糖阻遏物染色的这些带有乳糖操纵子标签的位点的三维位置,在分离的中期染色体中相对于用拓扑异构酶II抗体标记的中央染色单体轴进行测量。位点的纵向定位(而非轴向定位)是可重复的,但在姐妹染色单体之间显示出高达约300纳米的内在变异性。同一染色单体上的位点位置不相关,并且在姐妹染色单体上相应位点的位置之间未检测到相关性或对称性,这表明在数十兆碱基对的范围内不存在高度有序的长程染色质折叠。我们的观察结果与不存在任何规则的、可重复的螺旋状的、染色体折叠的最后一级相一致,但与任何在一个或多个层次存在折叠不规则性的层次折叠模型仍然一致。

相似文献

1
Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids.
Biophys J. 2009 Feb 18;96(4):1617-28. doi: 10.1016/j.bpj.2008.10.051.
2
Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure.
J Cell Biol. 2004 Sep 13;166(6):775-85. doi: 10.1083/jcb.200406049. Epub 2004 Sep 7.
7
Sister chromatid resolution is an intrinsic part of chromosome organization in prophase.
Nat Cell Biol. 2016 Jun;18(6):692-9. doi: 10.1038/ncb3353. Epub 2016 May 2.
8
Unusual chromosome architecture and behaviour at an HSR.
Chromosoma. 2000 Jun;109(3):181-9. doi: 10.1007/s004120050426.

引用本文的文献

1
Helical coiling of metaphase chromatids.
Nucleic Acids Res. 2023 Apr 11;51(6):2641-2654. doi: 10.1093/nar/gkad028.
2
The 3D Topography of Mitotic Chromosomes.
Mol Cell. 2020 Sep 17;79(6):902-916.e6. doi: 10.1016/j.molcel.2020.07.002. Epub 2020 Aug 7.
3
Chromosome organization by one-sided and two-sided loop extrusion.
Elife. 2020 Apr 6;9:e53558. doi: 10.7554/eLife.53558.
4
Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes.
Chromosoma. 2019 Mar;128(1):7-13. doi: 10.1007/s00412-018-0678-5. Epub 2018 Sep 3.
5
Visualization of chromosome condensation in plants with large chromosomes.
BMC Plant Biol. 2017 Sep 12;17(1):153. doi: 10.1186/s12870-017-1102-7.
6
Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation.
Genes (Basel). 2016 Sep 23;7(10):71. doi: 10.3390/genes7100071.
7
Novel insights into mitotic chromosome condensation.
F1000Res. 2016 Jul 25;5. doi: 10.12688/f1000research.8727.1. eCollection 2016.
8
Compaction and segregation of sister chromatids via active loop extrusion.
Elife. 2016 May 18;5:e14864. doi: 10.7554/eLife.14864.
9
Imaging Specific Genomic DNA in Living Cells.
Annu Rev Biophys. 2016 Jul 5;45:1-23. doi: 10.1146/annurev-biophys-062215-010830. Epub 2016 Apr 27.
10
Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture.
Epigenetics Chromatin. 2014 Nov 25;7(1):25. doi: 10.1186/1756-8935-7-25. eCollection 2014.

本文引用的文献

1
Packaging the genome: the structure of mitotic chromosomes.
J Biochem. 2008 Feb;143(2):145-53. doi: 10.1093/jb/mvm214. Epub 2007 Nov 2.
2
Mitotic chromosome structure and condensation.
Curr Opin Cell Biol. 2006 Dec;18(6):632-8. doi: 10.1016/j.ceb.2006.09.007. Epub 2006 Oct 12.
3
Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure.
J Cell Biol. 2004 Sep 13;166(6):775-85. doi: 10.1083/jcb.200406049. Epub 2004 Sep 7.
4
Regulation of sister chromatid cohesion between chromosome arms.
Curr Biol. 2004 Jul 13;14(13):1187-93. doi: 10.1016/j.cub.2004.06.052.
5
Mitotic chromosome formation and the condensin paradox.
Exp Cell Res. 2004 May 15;296(1):35-42. doi: 10.1016/j.yexcr.2004.03.006.
7
Integration of the cytogenetic map with the draft human genome sequence.
Hum Mol Genet. 2003 May 1;12(9):1037-44. doi: 10.1093/hmg/ddg113.
8
A two-step scaffolding model for mitotic chromosome assembly.
Dev Cell. 2003 Apr;4(4):467-80. doi: 10.1016/s1534-5807(03)00092-3.
9
The making of the mitotic chromosome: modern insights into classical questions.
Mol Cell. 2003 Mar;11(3):557-69. doi: 10.1016/s1097-2765(03)00103-5.
10
Precise nanometer localization analysis for individual fluorescent probes.
Biophys J. 2002 May;82(5):2775-83. doi: 10.1016/S0006-3495(02)75618-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验