Suppr超能文献

无 30nm 纤维的染色质:约束无序而非层级折叠。

Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding.

机构信息

Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia.

Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia.

出版信息

Epigenetics. 2014 May;9(5):653-7. doi: 10.4161/epi.28297. Epub 2014 Feb 21.

Abstract

Several hierarchical levels of DNA packaging are believed to exist in chromatin, starting from a 10-nm chromatin fiber that is further packed into a 30-nm fiber. Transitions between the 30-nm and 10-nm fibers are thought to be essential for the control of chromatin transcriptional status. However, recent studies demonstrate that in the nuclei, DNA is packed in tightly associated 10-nm fibers that are not compacted into 30-nm fibers. Additionally, the accessibility of DNA in chromatin depends on the local mobility of nucleosomes rather than on decompaction of chromosome regions. These findings argue for reconsidering the hierarchical model of chromatin packaging and some of the basic definitions of chromatin. In particular, chromatin domains should be considered as three-dimensional objects, which may include genomic regions that do not necessarily constitute a continuous domain on the DNA chain.

摘要

人们认为染色质中存在多个 DNA 包装层次,从 10nm 的染色质纤维开始,进一步包装成 30nm 的纤维。30nm 和 10nm 纤维之间的转变被认为对于控制染色质转录状态至关重要。然而,最近的研究表明,在核内,DNA 紧密地包装在未压缩成 30nm 纤维的紧密相关的 10nm 纤维中。此外,染色质中 DNA 的可及性取决于核小体的局部流动性,而不是染色体区域的解压缩。这些发现表明需要重新考虑染色质包装的层次模型和一些染色质的基本定义。特别是,染色质域应该被认为是三维物体,它可能包括基因组区域,这些区域不一定在 DNA 链上构成连续的域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f9/4063823/1519d027361a/epi-9-653-g1.jpg

相似文献

1
Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding.
Epigenetics. 2014 May;9(5):653-7. doi: 10.4161/epi.28297. Epub 2014 Feb 21.
2
Chromatin as dynamic 10-nm fibers.
Chromosoma. 2014 Jun;123(3):225-37. doi: 10.1007/s00412-014-0460-2. Epub 2014 Apr 16.
3
Chromatin organization - the 30 nm fiber.
Exp Cell Res. 2012 Jul 15;318(12):1448-55. doi: 10.1016/j.yexcr.2012.02.014. Epub 2012 Feb 24.
4
Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
Biophys J. 2017 Feb 7;112(3):434-445. doi: 10.1016/j.bpj.2017.01.003. Epub 2017 Jan 31.
5
Chromatin domains and regulation of transcription.
J Mol Biol. 2007 Jun 8;369(3):597-607. doi: 10.1016/j.jmb.2007.04.003. Epub 2007 Apr 5.
6
Unraveling the multiplex folding of nucleosome chains in higher order chromatin.
Essays Biochem. 2019 Apr 23;63(1):109-121. doi: 10.1042/EBC20180066.
7
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber.
Nat Struct Mol Biol. 2020 Feb;27(2):109-118. doi: 10.1038/s41594-019-0368-x. Epub 2020 Feb 10.
9
Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16992-7. doi: 10.1073/pnas.1108268108. Epub 2011 Oct 3.

引用本文的文献

1
Denoising Autoencoder Trained on Simulation-Derived Structures for Noise Reduction in Chromatin Scanning Transmission Electron Microscopy.
ACS Cent Sci. 2023 Jun 5;9(6):1200-1212. doi: 10.1021/acscentsci.3c00178. eCollection 2023 Jun 28.
2
Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography.
Mol Cell. 2022 Aug 18;82(16):3000-3014.e9. doi: 10.1016/j.molcel.2022.06.032. Epub 2022 Jul 30.
5
Regulation of Expression and Latency in BLV and HTLV.
Viruses. 2020 Sep 25;12(10):1079. doi: 10.3390/v12101079.
6
Weak interactions in higher-order chromatin organization.
Nucleic Acids Res. 2020 May 21;48(9):4614-4626. doi: 10.1093/nar/gkaa261.
7
The Biochemistry and Evolution of the Dinoflagellate Nucleus.
Microorganisms. 2019 Aug 8;7(8):245. doi: 10.3390/microorganisms7080245.
8
The 10-nm chromatin fiber and its relationship to interphase chromosome organization.
Biochem Soc Trans. 2018 Feb 19;46(1):67-76. doi: 10.1042/BST20170101. Epub 2017 Dec 20.
9
Chromatin Regulation and the Histone Code in HIV Latency
.
Yale J Biol Med. 2017 Jun 23;90(2):229-243. eCollection 2017 Jun.
10
Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure.
PLoS Comput Biol. 2017 Jan 30;13(1):e1005365. doi: 10.1371/journal.pcbi.1005365. eCollection 2017 Jan.

本文引用的文献

1
Identification and interrogation of combinatorial histone modifications.
Front Genet. 2013 Dec 20;4:264. doi: 10.3389/fgene.2013.00264.
2
Chromosomes: now in 3D!
Nat Rev Mol Cell Biol. 2014 Jan;15(1):6. doi: 10.1038/nrm3717. Epub 2013 Nov 27.
3
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure.
Chromosoma. 2014 Mar;123(1-2):3-13. doi: 10.1007/s00412-013-0435-8. Epub 2013 Aug 31.
4
Flexible and dynamic nucleosome fiber in living mammalian cells.
Nucleus. 2013 Sep-Oct;4(5):349-56. doi: 10.4161/nucl.26053. Epub 2013 Aug 12.
5
Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes.
Chromosoma. 2013 Oct;122(5):377-86. doi: 10.1007/s00412-013-0423-z. Epub 2013 Jul 3.
6
ENCODE: A Sourcebook of Epigenomes and Chromatin Language.
Genomics Inform. 2013 Mar;11(1):2-6. doi: 10.5808/GI.2013.11.1.2. Epub 2013 Mar 31.
7
High-throughput identification of long-range regulatory elements and their target promoters in the human genome.
Nucleic Acids Res. 2013 May;41(9):4835-46. doi: 10.1093/nar/gkt188. Epub 2013 Mar 21.
8
Modification of enhancer chromatin: what, how, and why?
Mol Cell. 2013 Mar 7;49(5):825-37. doi: 10.1016/j.molcel.2013.01.038.
9
The hierarchy of the 3D genome.
Mol Cell. 2013 Mar 7;49(5):773-82. doi: 10.1016/j.molcel.2013.02.011.
10
Histone acetylation: from code to web and router via intrinsically disordered regions.
Curr Pharm Des. 2013;19(28):5019-42. doi: 10.2174/1381612811319280002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验