Statistics Unit, Dalarna University, Borlänge, Sweden.
Genetics. 2011 Jun;188(2):435-47. doi: 10.1534/genetics.111.127068. Epub 2011 Apr 5.
Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait's average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual's character is not only of great practical importance in medical genetics and food production but is also of scientific and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F₂ and collaborative cross data, and on a real F₂ intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally.
传统的方法用于检测人类或动物模型中的复杂疾病、家畜的产奶量或其他感兴趣的特征的基因,这些方法询问基因型的变异是否会导致该特征平均值的变化。但是,关注平均值的差异会忽略平均值的可变性差异。个体特征的稳健性或均匀性不仅在医学遗传学和食品生产中具有重要的实际意义,而且在科学和进化方面也具有重要意义(例如,心脏病动物模型中的血压、猪的产仔数、植物的开花时间)。我们描述了一种用于检测控制表型方差的主要基因的方法,我们将这些基因称为 vQTL。我们的方法使用基于线起源概率的线性预测器的双广义线性模型。我们在模拟 F₂和协作交叉数据以及真实的 F₂ 杂交上评估了我们的方法,证明了它在存在普通均值控制 QTL 时的准确性和稳健性。我们还说明了 vQTL 与涉及上位性的 QTL 之间的联系,解释了这些概念如何重叠。我们的方法可应用于广泛使用的常用实验杂交中,并可更普遍地扩展到遗传关联。