Statistics Unit, Dalarna University, SE-781 70 Borlänge, Sweden.
Genet Sel Evol. 2010 Mar 19;42(1):8. doi: 10.1186/1297-9686-42-8.
The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms.
We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model.
We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
动物对微环境变化的敏感性存在差异,这种差异可能受到遗传控制。在培育健壮的农场动物时,必须考虑到这一因素。此时,可以使用模型残差方差部分包含遗传效应的线性混合模型。之前已经使用 EM 和 MCMC 算法对这些模型进行了拟合。
我们提出使用双重层次广义线性模型(DHGLM),其中假设平方残差服从伽马分布,并且使用广义线性模型拟合残差方差。该算法在两组混合模型方程之间迭代,一组是在观测水平上,另一组是在方差水平上。该方法通过模拟验证,也通过重新分析先前使用贝叶斯方法分析的猪产仔数数据集进行了验证。猪产仔数数据包含来自 4149 头母猪的 10060 个记录。DHGLM 使用 ASReml 软件实现,该算法在 Linux 服务器上三分钟内收敛。估计值与先前使用贝叶斯方法获得的结果相似,尤其是模型残差方差部分的方差分量。
我们已经表明,可以使用 DHGLM 方法估计线性混合模型残差方差部分的方差分量。该方法可用于分析具有大量观测值的动物模型。DHGLM 方法的一个重要未来发展是将模型均值和残差方差部分的随机效应之间的遗传相关作为 DHGLM 的一个参数包含在内。