Kim Sangook, Lin Yu-Chung, Strug Lisa J
Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Genet Epidemiol. 2025 Jul;49(5):e70013. doi: 10.1002/gepi.70013.
For complex traits such as lung disease in Cystic Fibrosis (CF), Gene x Gene or Gene x Environment interactions can impact disease severity but these remain largely unknown. Unaccounted-for genetic interactions introduce a distributional shift in the quantitative trait across the genotypic groups. Joint location and scale tests, or full distributional differences across genotype groups can account for unknown genetic interactions and increase power for gene identification compared with the conventional association test. Here we propose a new joint location and scale test (JLS), a quantile regression-basd JLS (qJLS), that addresses previous limitations. Specifically, qJLS is free of distributional assumptions, thus applies to non-Gaussian traits; is as powerful as the existing JLS tests under Gaussian traits; and is computationally efficient for genome-wide association studies (GWAS). Our simulation studies, which model unknown genetic interactions, demonstrate that qJLS is robust to skewed and heavy-tailed error distributions and is as powerful as other JLS tests in the literature under normality. Without any unknown genetic interaction, qJLS shows a large increase in power with non-Gaussian traits over conventional association tests and is slightly less powerful under normality. We apply the qJLS method to the Canadian CF Gene Modifier Study (n = 1,997) and identified a genome-wide significant variant, rs9513900 on chromosome 13, that had not previously been reported to contribute to CF lung disease. qJLS provides a powerful alternative to conventional genetic association tests, where interactions may contribute to a quantitative trait.
对于囊性纤维化(CF)中的肺部疾病等复杂性状,基因与基因或基因与环境的相互作用会影响疾病严重程度,但这些相互作用在很大程度上仍不为人知。未被考虑的基因相互作用会导致定量性状在基因型组间出现分布偏移。与传统关联检验相比,联合位置和尺度检验或基因型组间的全分布差异能够解释未知的基因相互作用,并提高基因识别的效能。在此,我们提出一种新的联合位置和尺度检验(JLS),即基于分位数回归的JLS(qJLS),它克服了以往的局限性。具体而言,qJLS无需分布假设,因此适用于非高斯性状;在高斯性状下与现有的JLS检验效能相当;且对于全基因组关联研究(GWAS)计算效率高。我们的模拟研究对未知的基因相互作用进行建模,结果表明qJLS对偏态和重尾误差分布具有稳健性,在正态性条件下与文献中的其他JLS检验效能相当。在不存在任何未知基因相互作用的情况下,对于非高斯性状,qJLS相较于传统关联检验效能大幅提高,而在正态性条件下效能略低。我们将qJLS方法应用于加拿大CF基因修饰研究(n = 1997),并鉴定出一个全基因组显著变异体,位于13号染色体上的rs9513900,此前未曾报道其与CF肺部疾病有关。对于可能影响定量性状的相互作用,qJLS为传统基因关联检验提供了一种强大的替代方法。