Kennard Andrew S, Velle Katrina B, Ranjan Ravi, Schulz Danae, Fritz-Laylin Lillian K
Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA.
Department of Biology and the Howard Hughes Medical Institute, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts-Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
Curr Biol. 2025 Jan 20;35(2):233-248.e8. doi: 10.1016/j.cub.2024.11.022. Epub 2024 Dec 17.
Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it difficult to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria expresses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule-binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule-binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.
多种真核细胞组装结构和组成各异的微管网络。虽然我们了解细胞如何构建具有特定功能的微管网络,但我们并不清楚微管网络在漫长的进化时间尺度上是如何多样化的。这个问题一直未得到解决,因为大多数生物使用共同的微管蛋白库来构建多个网络,这使得追踪任何单个网络的进化变得困难。相比之下,变形鞭毛虫纳格里亚利用不同的微管蛋白基因构建不同的微管网络:纳格里亚在分化过程中利用保守的微管蛋白构建鞭毛,而利用不同的微管蛋白构建其有丝分裂纺锤体。这种基因分离形成了一个内部控制系统,用于在单一生物体和基因组背景下研究独立的微管网络。为了探索这些微管网络的进化,我们鉴定了保守的微管结合蛋白,并利用有丝分裂和分化的转录谱来确定哪些蛋白在每个网络组装过程中上调。令人惊讶的是,大多数微管结合蛋白仅在一个过程中上调,这表明纳格里亚利用不同的组分库来使微管网络特化。此外,有丝分裂微管蛋白的不同残基往往落在分化特异性微管调节因子的结合位点内,这表明微管与其结合蛋白之间的相互作用限制了微管蛋白序列的多样化。因此,我们提出了一个细胞骨架进化模型,其中微管网络组分库限制并引导整个网络的多样化,使得微管蛋白的进化与其结合伙伴的进化紧密相连。