Suppr超能文献

应用物理遗传学和化学基因组学进行 G 蛋白偶联受体配体的药物设计——原理和案例研究。

Drug design of GPCR ligands using physicogenetics and chemogenomics--principles and case studies.

机构信息

7TM Pharma A/S, Fremtidsvej 3, DK-2970 Hørsholm, Denmark.

出版信息

Curr Top Med Chem. 2011;11(15):1882-901. doi: 10.2174/156802611796391258.

Abstract

An efficient computational method for hit and lead identification is described. The method that incorporate ligand information from physicogenetically related 7TM receptors, i.e. receptors with similar physicochemical features in the ligand binding pockets, have been developed to aid the construction of pharmacophore queries for mining of vendor and in-house databases to produce small focused libraries for a specific GPCR target. The physicogenetically related targets could be complementary to phylogenetically derived receptors and convey more relevance for the structure-based design approaches suitable for GPCR targets associated with no or limited ligand information. The approach is useful not only in identification of hits but also in the hit-to-lead process as constructed homology receptor models, SAR information and pharmacophore features are collectively utilized in the design of proprietary new lead series. This site-directed drug discovery approach of making smaller receptor-specific libraries displays important advantages over conventional HTS-based generation of hits. The methodology has been exemplified with the CRTH2 receptor, which was associated with minimal ligand information, to produce a small diverse library containing several useful hit series which were further converted into drugable lead series. The use of ligand and QSAR information in scaffold hopping was exemplified with MCH1R antagonists, which had been obtained via chemogenomics-enriched design. Finally, an example on how ligand relationships can be used in identifying receptor relationships was given with CCR2 antagonists to highlight the 3D relationships of GPCR targets not directly evident from either phylogenetic or physicogenetic relationships.

摘要

描述了一种用于命中和先导识别的有效计算方法。该方法整合了来自物理化学相关 7TM 受体(即配体结合口袋中具有相似物理化学特征的受体)的配体信息,旨在辅助构建药效团查询,用于挖掘供应商和内部数据库,为特定 GPCR 靶标产生小而集中的文库。物理化学相关的靶标可以与系统发生衍生的受体互补,并为基于结构的设计方法提供更多相关性,这些方法适用于与无配体信息或有限配体信息相关的 GPCR 靶标。该方法不仅在命中识别中有用,而且在命中到先导的过程中也很有用,因为构建的同源受体模型、SAR 信息和药效团特征在专有新型先导系列的设计中被集体利用。与传统的基于 HTS 的命中生成相比,这种针对特定受体的定向药物发现方法具有重要优势。该方法已通过与配体信息相关较少的 CRTH2 受体进行了实例化,以产生包含多个有用命中系列的小型多样化文库,这些文库进一步转化为可成药的先导系列。使用配体和 QSAR 信息进行支架跳跃的例子是 MCH1R 拮抗剂,这些拮抗剂是通过化学基因组学富集设计获得的。最后,以 CCR2 拮抗剂为例说明了如何在识别受体关系中使用配体关系,以突出从系统发生或物理化学关系中不易直接看出的 GPCR 靶标的 3D 关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验