Suppr超能文献

贝叶斯估计在系统发育重建中的应用。

Bayes estimators for phylogenetic reconstruction.

机构信息

Lane Center for Computational Biology, Carnegie Mellon University, Mellon Institute Building, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.

出版信息

Syst Biol. 2011 Jul;60(4):528-40. doi: 10.1093/sysbio/syr021. Epub 2011 Apr 6.

Abstract

Tree reconstruction methods are often judged by their accuracy, measured by how close they get to the true tree. Yet, most reconstruction methods like maximum likelihood (ML) do not explicitly maximize this accuracy. To address this problem, we propose a Bayesian solution. Given tree samples, we propose finding the tree estimate that is closest on average to the samples. This "median" tree is known as the Bayes estimator (BE). The BE literally maximizes posterior expected accuracy, measured in terms of closeness (distance) to the true tree. We discuss a unified framework of BE trees, focusing especially on tree distances that are expressible as squared euclidean distances. Notable examples include Robinson-Foulds (RF) distance, quartet distance, and squared path difference. Using both simulated and real data, we show that BEs can be estimated in practice by hill-climbing. In our simulation, we find that BEs tend to be closer to the true tree, compared with ML and neighbor joining. In particular, the BE under squared path difference tends to perform well in terms of both path difference and RF distances.

摘要

树重建方法通常通过其准确性进行评估,准确性的衡量标准是它们与真实树的接近程度。然而,像最大似然法 (ML) 这样的大多数重建方法并没有明确地最大化这个准确性。为了解决这个问题,我们提出了一个贝叶斯解决方案。给定树样本,我们建议找到平均而言最接近样本的树估计值。这个“中位数”树被称为贝叶斯估计器 (BE)。BE 实际上最大化了后验预期准确性,以与真实树的接近程度(距离)来衡量。我们讨论了 BE 树的统一框架,特别关注可表示为平方欧几里得距离的树距离。值得注意的例子包括罗宾逊-福尔德 (RF) 距离、四分体距离和平方路径差。使用模拟和真实数据,我们表明可以通过爬山法在实践中估计 BE。在我们的模拟中,我们发现与 ML 和邻居连接相比,BE 往往更接近真实树。特别是,在平方路径差下的 BE 在路径差和 RF 距离方面表现良好。

相似文献

1
Bayes estimators for phylogenetic reconstruction.贝叶斯估计在系统发育重建中的应用。
Syst Biol. 2011 Jul;60(4):528-40. doi: 10.1093/sysbio/syr021. Epub 2011 Apr 6.
3
An efficient algorithm for approximating geodesic distances in tree space.一种用于逼近树空间测地距离的有效算法。
IEEE/ACM Trans Comput Biol Bioinform. 2011 Sep-Oct;8(5):1196-207. doi: 10.1109/TCBB.2010.121.

本文引用的文献

1
A fast algorithm for computing geodesic distances in tree space.一种用于计算树空间测地距离的快速算法。
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):2-13. doi: 10.1109/TCBB.2010.3.
2
Quartets MaxCut: a divide and conquer quartets algorithm.四重体最大切割:一种分而治之的四重体算法。
IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):704-18. doi: 10.1109/TCBB.2008.133.
6
On the optimality of the neighbor-joining algorithm.关于邻接法算法的最优性。
Algorithms Mol Biol. 2008 Apr 30;3:5. doi: 10.1186/1748-7188-3-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验