MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Langmuir. 2011 May 3;27(9):5242-51. doi: 10.1021/la2002223. Epub 2011 Apr 8.
Here we report a facile way of stabilizing large gold nanoparticles (AuNPs) by mixed charged zwitterionic self-assembled monolayers (SAMs). The citrate-capped AuNPs with diameters ranging from 16 nm to even ∼100 nm are well stabilized via a simple place exchange reaction with a 1:1 molar ratio mixture of negatively charged sodium 10-mercaptodecanesulfonic acid (HS-C10-S) and positively charged (10-mercaptodecyl)-trimethyl-ammonium bromide (HS-C10-N4). The 16 nm AuNPs protected by mixed charged zwitterionic SAMs not only show much better stability than the single negatively or positively charged AuNPs, but also exhibit exciting stability as well as those modified by monohydroxy (1-mercaptoundec-11-yl) tetraethylene glycol (HS-C11-EG4). Importantly, 16 nm AuNPs protected by mixed SAMs exhibit good stability in cell culture medium with 10% FBS and strong protein resistance, especially with excellent resistance against plasma adsorption. Moreover, the mixed charged zwitterionic SAMs are also able to well-stabilize larger AuNPs with a diameter of 50 nm, and to help remarkably improve their stability in saline solution compared with HS-C11-EG4 protected ones. When it comes to AuNPs with a diameter of 100 nm, the mixed charged zwitterionic SAM protected nanoparticles retain a smaller hydrodynamic diameter and even better long-term stability than those modified by mercaptopolyethylene glycol (M(w) = 2000, HS-PEG2000). The above results demonstrated that the mixed charged zwitterionic SAMs are able to have a similar effect on stabilizing the large gold nanoparticles just like the single-component zwitterionic SAMs. Concerning its ease of preparation, versatility, and excellent properties, the strategy based on the mixed charged zwitterionic SAM protection might provide a promising method to surface tailoring of nanoparticles for biomedical application.
在这里,我们报告了一种通过混合带电两性离子自组装单分子层(SAM)稳定大尺寸金纳米粒子(AuNPs)的简便方法。通过简单的位置交换反应,用等摩尔比(1:1)的带负电荷的十巯基十一烷磺酸(HS-C10-S)和带正电荷的(10-巯基癸基)-三甲基-溴化铵(HS-C10-N4)混合物,可将直径为 16nm 甚至约 100nm 的柠檬酸稳定的 AuNPs 很好地稳定下来。由混合带电两性离子 SAM 保护的 16nm AuNPs 不仅比单电荷 AuNPs 具有更好的稳定性,而且还表现出令人兴奋的稳定性,与由单羟基(1-巯基十一烷-11-基)四乙二醇(HS-C11-EG4)修饰的 AuNPs 相当。重要的是,在含有 10% FBS 的细胞培养基中,由混合 SAM 保护的 16nm AuNPs 具有良好的稳定性,且具有很强的抗蛋白质吸附能力,尤其是对等离子体吸附具有优异的抗性。此外,混合带电两性离子 SAM 还能够很好地稳定直径为 50nm 的较大 AuNPs,并有助于显著提高其在盐溶液中的稳定性,与由 HS-C11-EG4 保护的 AuNPs 相比。对于直径为 100nm 的 AuNPs,混合带电两性离子 SAM 保护的纳米颗粒保留了较小的水动力直径,且比由巯基聚乙二醇(M(w)=2000,HS-PEG2000)修饰的纳米颗粒具有更好的长期稳定性。上述结果表明,混合带电两性离子 SAM 能够对稳定大尺寸金纳米颗粒产生类似于单一组分两性离子 SAM 的类似效果。鉴于其易于制备、多功能性和优良的性质,基于混合带电两性离子 SAM 保护的策略可能为用于生物医学应用的纳米颗粒表面修饰提供一种有前途的方法。