Suppr超能文献

声门期间非对称声门射流偏折的计算研究。

A computational study of asymmetric glottal jet deflection during phonation.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

出版信息

J Acoust Soc Am. 2011 Apr;129(4):2133-43. doi: 10.1121/1.3544490.

Abstract

Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier-Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called "Coanda effect" in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection.

摘要

采用二维数值模拟研究了发音过程中声门射流不对称偏折的机理。模型采用全纳维-斯托克斯方程描述流动,但喉腔几何形状和声带运动较为简单。研究重点关注雷诺数和声门开度的影响,特别关注所谓的“附壁效应”对射流偏折的重要性。研究表明,声门开度对声门射流偏折没有实质性影响。声门射流的偏折总是先于声门射流下游部分出现大尺度的非对称。对速度和涡量场的详细分析表明,这些下游非对称涡结构在声门出口处产生了流动,这是导致声门射流偏折的主要原因。

相似文献

1
A computational study of asymmetric glottal jet deflection during phonation.
J Acoust Soc Am. 2011 Apr;129(4):2133-43. doi: 10.1121/1.3544490.
2
Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
J Acoust Soc Am. 2011 Dec;130(6):EL373-9. doi: 10.1121/1.3655893.
3
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
4
Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
J Acoust Soc Am. 2010 Jan;127(1):435-44. doi: 10.1121/1.3271276.
5
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
J Biomech. 2015 May 1;48(7):1248-57. doi: 10.1016/j.jbiomech.2015.03.010. Epub 2015 Mar 19.
6
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.
10
Computational Modeling of Voice Production Using Excised Canine Larynx.
J Biomech Eng. 2022 Feb 1;144(2). doi: 10.1115/1.4052226.

引用本文的文献

1
Pressure Distributions in Glottal Geometries With Multichannel Airflows.
J Voice. 2024 Sep 16. doi: 10.1016/j.jvoice.2024.08.019.
2
Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
J Voice. 2025 Mar;39(2):293-303. doi: 10.1016/j.jvoice.2022.08.030. Epub 2022 Sep 28.
3
Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
Fluids (Basel). 2022 Mar;7(3). doi: 10.3390/fluids7030097. Epub 2022 Mar 6.
6
Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction.
Biomed Eng Lett. 2018 Jun 8;8(3):309-320. doi: 10.1007/s13534-018-0075-2. eCollection 2018 Aug.
9
Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
Front Bioeng Biotechnol. 2017 Feb 13;5:7. doi: 10.3389/fbioe.2017.00007. eCollection 2017.
10
Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds.
J Acoust Soc Am. 2016 May;139(5):2683. doi: 10.1121/1.4948755.

本文引用的文献

1
A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
J Comput Phys. 2008;227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028.
2
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.
3
Flow-structure-acoustic interaction in a human voice model.
J Acoust Soc Am. 2009 Mar;125(3):1351-61. doi: 10.1121/1.3068444.
4
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
7
9
Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
J Voice. 2006 Dec;20(4):489-512. doi: 10.1016/j.jvoice.2005.07.006. Epub 2006 Jan 23.
10
Modeling vocal fold motion with a hydrodynamic semicontinuum model.
J Acoust Soc Am. 2003 Jul;114(1):455-64. doi: 10.1121/1.1577547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验