Institute of Physics, Chinese Academy of Sciences, Beijing, China.
J Chem Phys. 2011 Apr 7;134(13):134701. doi: 10.1063/1.3569134.
Quantum Monte Carlo calculations with the diffusion Monte Carlo (DMC) method have been used to compute the binding energy curves of hydrogen on benzene, coronene, and graphene. The DMC results on benzene agree with both Møller-Plessett second order perturbation theory (MP2) and coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] calculations, giving an adsorption energy of ∼25 meV. For coronene, DMC agrees well with MP2, giving an adsorption energy of ∼40 meV. For physisorbed hydrogen on graphene, DMC predicts a very small adsorption energy of only 5 ± 5 meV. Density functional theory (DFT) calculations with various exchange-correlation functionals, including van der Waals corrected functionals, predict a wide range of binding energies on all three systems. The present DMC results are a step toward filling the gap in accurate benchmark data on weakly bound systems. These results can help us to understand the performance of current DFT based methods, and may aid in the development of improved approaches.
采用扩散蒙特卡罗(DMC)方法的量子蒙特卡罗计算已经被用于计算氢在苯、并五苯和石墨烯上的结合能曲线。DMC 在苯上的结果与 Møller-Plessett 二级微扰理论(MP2)和包含单电子、双电子和微扰三电子[CCSD(T)]的耦合簇计算一致,给出的吸附能约为 25 meV。对于并五苯,DMC 与 MP2 吻合较好,给出的吸附能约为 40 meV。对于在石墨烯上物理吸附的氢,DMC 预测的吸附能非常小,只有 5 ± 5 meV。使用各种交换相关泛函(包括范德华修正泛函)的密度泛函理论(DFT)计算在所有三个体系上预测了广泛的结合能范围。目前的 DMC 结果是朝着填补弱束缚体系准确基准数据空白迈出的一步。这些结果有助于我们理解当前基于 DFT 的方法的性能,并可能有助于开发改进的方法。