Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
Cell. 2011 Apr 15;145(2):183-97. doi: 10.1016/j.cell.2011.03.003. Epub 2011 Apr 7.
The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.
胚胎干细胞 (ES) 细胞的转录和染色质修饰网络对于自我更新的维持至关重要。然而,这些网络是否具有功能相互作用,以及如果存在这种相互作用,是什么因素介导了这种相互作用,目前仍不清楚。在这里,我们表明 WD 重复结构域 5 (Wdr5),一种哺乳动物 Trithorax (trxG) 复合物的核心成员,与未分化状态呈正相关,是 ES 细胞自我更新的调节因子。我们证明 Wdr5 是 H3K4 甲基化的“效应物”,与多能转录因子 Oct4 相互作用。全基因组蛋白定位和转录组分析表明,Oct4 和 Wdr5 之间存在重叠的基因调控功能。Oct4-Sox2-Nanog 电路和 trxG 合作激活关键自我更新调节因子的转录,此外,Wdr5 表达对于诱导多能干细胞 (iPS) 细胞的有效形成是必需的。我们提出了一个转录和表观遗传控制的综合模型,由特定的 trxG 成员介导,用于维持 ES 细胞的自我更新和体细胞重编程。