Suppr超能文献

可操纵的金字塔和 L2(R(d)) 中的紧小波框架。

Steerable pyramids and tight wavelet frames in L2(R(d)).

机构信息

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

IEEE Trans Image Process. 2011 Oct;20(10):2705-21. doi: 10.1109/TIP.2011.2138147. Epub 2011 Apr 7.

Abstract

We present a functional framework for the design of tight steerable wavelet frames in any number of dimensions. The 2-D version of the method can be viewed as a generalization of Simoncelli's steerable pyramid that gives access to a larger palette of steerable wavelets via a suitable parametrization. The backbone of our construction is a primal isotropic wavelet frame that provides the multiresolution decomposition of the signal. The steerable wavelets are obtained by applying a one-to-many mapping (Nth-order generalized Riesz transform) to the primal ones. The shaping of the steerable wavelets is controlled by an M×M unitary matrix (where M is the number of wavelet channels) that can be selected arbitrarily; this allows for a much wider range of solutions than the traditional equiangular configuration (steerable pyramid). We give a complete functional description of these generalized wavelet transforms and derive their steering equations. We describe some concrete examples of transforms, including some built around a Mallat-type multiresolution analysis of L(2)(R(d)), and provide a fast Fourier transform-based decomposition algorithm. We also propose a principal-component-based method for signal-adapted wavelet design. Finally, we present some illustrative examples together with a comparison of the denoising performance of various brands of steerable transforms. The results are in favor of an optimized wavelet design (equalized principal component analysis), which consistently performs best.

摘要

我们提出了一个功能框架,用于设计任意维数的紧可转向小波框架。该方法的 2-D 版本可以看作是 Simoncelli 的可转向金字塔的推广,通过适当的参数化,可以访问更大的可转向小波调色板。我们构造的核心是一个原始各向同性小波框架,它提供了信号的多分辨率分解。可转向小波通过将原始小波应用于一对一映射(N 阶广义 Riesz 变换)来获得。可转向小波的形状由一个 M×M 的酉矩阵(其中 M 是小波通道的数量)控制,该矩阵可以任意选择;这比传统的等角配置(可转向金字塔)提供了更广泛的解决方案。我们给出了这些广义小波变换的完整功能描述,并推导出它们的转向方程。我们描述了一些具体的变换示例,包括一些基于 L(2)(R(d))的 Mallat 型多分辨率分析构建的示例,并提供了基于快速傅里叶变换的分解算法。我们还提出了一种基于主成分的信号自适应小波设计方法。最后,我们给出了一些说明性示例,并比较了各种可转向变换的去噪性能。结果支持优化的小波设计(等化主成分分析),它始终表现最好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验