Suppr超能文献

α-螺旋成核的时间尺度是多少?

What is the time scale for α-helix nucleation?

机构信息

Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK.

出版信息

J Am Chem Soc. 2011 May 4;133(17):6809-16. doi: 10.1021/ja200834s. Epub 2011 Apr 11.

Abstract

Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ∼0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.

摘要

螺旋形成是蛋白质折叠的基本过程,影响全局折叠反应的速率和机制。然而,由于螺旋形成的协同性不如蛋白质折叠,动力学通常是多指数的,观察到的弛豫时间与螺旋成核和延伸的微观速率没有直接关系。最近对肽 Ac-WAAAH(+)-NH2 的超快光谱测量结果最好用两个弛豫模式来拟合,在 0.1-1 ns 的时间范围内,(1)明显快于以前实验推断的螺旋成核。在这里,我们使用 replica-exchange 分子动力学模拟和优化的全原子蛋白质力场(Amber ff03w)和精确的水模型(TIP4P/2005)来研究这种肽中螺旋形成的动力学。我们通过将螺旋态之间的动力学处理为马科夫过程,使用最近开发的形式来计算模拟中温度依赖性的微观速率系数。从模拟中获得的荧光弛豫曲线与实验确定的结果非常吻合。我们发现动力学是多相的,但可以用双指数函数很好地近似。主要的弛豫过程是 C 末端螺旋态的收缩和线圈态之间更快的重新平衡。尽管观察到的弛豫很快,但我们的模型估计螺旋成核时间在 300 K 时为 20-70 ns,温度依赖性很好地符合 Arrhenius 动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验