Suppr超能文献

利用多种微环境寻找相似的配体结合位点:在激酶抑制剂结合中的应用。

Using multiple microenvironments to find similar ligand-binding sites: application to kinase inhibitor binding.

机构信息

Department of Genetics, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2011 Dec;7(12):e1002326. doi: 10.1371/journal.pcbi.1002326. Epub 2011 Dec 29.

Abstract

The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for inhibiting two proteins in a single pathway.

摘要

识别蛋白质结构中隐藏的小分子结合位点对于理解药物的非靶标副作用以及识别现有药物的潜在新适应症非常重要。目前的方法主要关注假定结合口袋中的几何形状和详细的化学相互作用,但可能无法识别远距离的相似性,在这些相似性中,动力学或修饰的相互作用允许一种配体似乎可以结合明显不同的结合口袋。在本文中,我们引入了一种算法,该算法在两个结合位点内寻找相似的微环境,并通过存在多个共享的微环境来评估整体结合位点的相似性。该方法的几何要求相对较弱(允许配体和口袋中的构象变化或动力学),并使用多种生物物理和生化措施来描述微环境(允许配体结合的多种模式)。我们将该算法命名为 PocketFEATURE,因为它专注于使用 FEATURE 系统来描述口袋。我们首先通过显示它可以更好地区分结合相似配体的位点和不结合的位点来验证 PocketFEATURE,并且通过显示我们可以在蛋白质组范围内以 92%的曲线下面积 (AUC) 识别 FAD 结合位点来验证它。然后,我们将 PocketFEATURE 应用于进化上相距较远的激酶,对于这些激酶,该方法可以识别出几个已证明的远距离关系,并预测出意想不到的共同配体结合。使用来自 ChEMBL 和 Ambit 的实验数据,我们表明在高置信水平下,预测有 40 对激酶共享配体。其中一些对提供了在单个途径中抑制两个蛋白质的新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395d/3248393/2ceb9abbe538/pcbi.1002326.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验