Department of Biochemistry and Molecular Biology and Institute of Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6933-8. doi: 10.1073/pnas.1019033108. Epub 2011 Apr 11.
Aminoacyl-tRNA synthetases perform a critical step in translation by aminoacylating tRNAs with their cognate amino acids. Although high fidelity of aminoacyl-tRNA synthetases is often thought to be essential for cell biology, recent studies indicate that cells tolerate and may even benefit from tRNA misacylation under certain conditions. For example, mammalian cells selectively induce mismethionylation of nonmethionyl tRNAs, and this type of misacylation contributes to a cell's response to oxidative stress. However, the enzyme responsible for tRNA mismethionylation and the mechanism by which specific tRNAs are mismethionylated have not been elucidated. Here we show by tRNA microarrays and filter retention that the methionyl-tRNA synthetase enzyme from Escherichia coli (EcMRS) is sufficient to mismethionylate two tRNA species, and , indicating that tRNA mismethionylation is also present in the bacterial domain of life. We demonstrate that the anticodon nucleotides of these misacylated tRNAs play a critical role in conferring mismethionylation identity. We also show that a certain low level of mismethionylation is maintained for these tRNAs, suggesting that mismethionylation levels may have evolved to confer benefits to the cell while still preserving sufficient translational fidelity to ensure cell viability. EcMRS mutants show distinct effects on mismethionylation, indicating that many regions in this synthetase enzyme influence mismethionylation. Our results show that tRNA mismethionylation can be carried out by a single protein enzyme, mismethionylation also requires identity elements in the tRNA, and EcMRS has a defined structure-function relationship for tRNA mismethionylation.
氨酰-tRNA 合成酶通过将 tRNA 与它们对应的氨基酸氨酰化来完成翻译过程中的一个关键步骤。尽管氨酰-tRNA 合成酶的高保真度通常被认为对细胞生物学至关重要,但最近的研究表明,在某些条件下,细胞可以容忍甚至受益于 tRNA 的错误氨酰化。例如,哺乳动物细胞选择性地诱导非甲硫氨酸 tRNA 的错甲硫酰化,这种类型的错误氨酰化有助于细胞对氧化应激的反应。然而,负责 tRNA 错甲硫酰化的酶以及特定 tRNA 发生错甲硫酰化的机制尚未阐明。在这里,我们通过 tRNA 微阵列和过滤保留实验表明,来自大肠杆菌(EcMRS)的甲硫氨酰-tRNA 合成酶足以错甲硫酰化两种 tRNA 物种, 和 ,这表明 tRNA 错甲硫酰化也存在于细菌生命领域。我们证明了这些错氨酰化 tRNA 的反密码子核苷酸在赋予错甲硫酰化身份方面起着关键作用。我们还表明,这些 tRNA 保持一定水平的低错甲硫酰化,这表明错甲硫酰化水平可能已经进化到为细胞带来益处,同时仍然保持足够的翻译保真度以确保细胞活力。EcMRS 突变体对错甲硫酰化表现出明显不同的影响,这表明该合成酶中的许多区域影响错甲硫酰化。我们的结果表明,单个蛋白质酶可以进行 tRNA 错甲硫酰化,错甲硫酰化还需要 tRNA 中的身份元件,并且 EcMRS 与 tRNA 错甲硫酰化具有明确的结构-功能关系。