Suppr超能文献

个体突变体的适应性排名驱动 HIV-1 中上位性相互作用的模式。

Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1.

机构信息

Department of Virology, University of the Saarland, Homburg, Germany.

出版信息

PLoS One. 2011 Mar 31;6(3):e18375. doi: 10.1371/journal.pone.0018375.

Abstract

Fitness interactions between mutations, referred to as epistasis, can strongly impact evolution. For RNA viruses and retroviruses with their high mutation rates, epistasis may be particularly important to overcome fitness losses due to the accumulation of deleterious mutations and thus could influence the frequency of mutants in a viral population. As human immunodeficiency virus type 1 (HIV-1) resistance to azidothymidine (AZT) requires selection of sequential mutations, it is a good system to study the impact of epistasis. Here we present a thorough analysis of a classical AZT-resistance pathway (the 41-215 cluster) of HIV-1 variants by fitness measurements in single round infection assays covering physiological drug concentrations ex vivo. The sign and value of epistasis varied and did not predict the epistatic effect on the mutant frequency. This complex behavior is explained by the fitness ranking of the variants that strongly depends on environmental factors, i.e., the presence and absence of drugs and the host cells used. Although some interactions compensate fitness losses, the observed small effect on the relative mutant frequencies suggests that epistasis might be inefficient as a buffering mechanism for fitness losses in vivo. While the use of epistasis-based hypotheses to make general assumptions on the evolutionary dynamics of viral populations is appealing, our data caution their interpretation without further knowledge on the characteristics of the viral mutant spectrum under different environmental conditions.

摘要

突变之间的适应相互作用(称为上位性)可以强烈影响进化。对于具有高突变率的 RNA 病毒和逆转录病毒,上位性可能对于克服由于有害突变的积累而导致的适应性损失特别重要,因此可能会影响病毒群体中突变体的频率。由于人类免疫缺陷病毒 1 型(HIV-1)对叠氮胸苷(AZT)的抗性需要选择连续的突变,因此它是研究上位性影响的一个很好的系统。在这里,我们通过涵盖生理药物浓度的单轮感染测定来对 HIV-1 变体的经典 AZT 抗性途径(41-215 簇)进行了全面分析。上位性的符号和值有所不同,并且不能预测对突变体频率的上位性效应。这种复杂的行为是由变体的适应性排序解释的,该排序强烈依赖于环境因素,即药物的存在与否以及所使用的宿主细胞。尽管一些相互作用可以补偿适应性损失,但观察到对相对突变体频率的微小影响表明,上位性作为体内适应性损失的缓冲机制可能效率不高。虽然基于上位性的假设用于对病毒群体的进化动态做出一般假设很有吸引力,但我们的数据警告说,在没有关于不同环境条件下病毒突变体谱特征的进一步知识的情况下,对其进行解释需要谨慎。

相似文献

1
Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1.
PLoS One. 2011 Mar 31;6(3):e18375. doi: 10.1371/journal.pone.0018375.
3
Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
PLoS Genet. 2020 Oct 21;16(10):e1009009. doi: 10.1371/journal.pgen.1009009. eCollection 2020 Oct.
5
Limits to detecting epistasis in the fitness landscape of HIV.
PLoS One. 2022 Jan 18;17(1):e0262314. doi: 10.1371/journal.pone.0262314. eCollection 2022.
9
A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase.
Nat Genet. 2011 May;43(5):487-9. doi: 10.1038/ng.795. Epub 2011 Mar 27.
10
Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy.
Nature. 1993 Feb 18;361(6413):650-4. doi: 10.1038/361650a0.

引用本文的文献

3
A systematic survey of an intragenic epistatic landscape.
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
4
Inferring fitness landscapes by regression produces biased estimates of epistasis.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2301-9. doi: 10.1073/pnas.1400849111. Epub 2014 May 19.
7
In vitro HIV-1 evolution in response to triple reverse transcriptase inhibitors & in silico phenotypic analysis.
PLoS One. 2013 Apr 17;8(4):e61102. doi: 10.1371/journal.pone.0061102. Print 2013.
8
Congruent evolution of fitness and genetic robustness in vesicular stomatitis virus.
J Virol. 2013 May;87(9):4923-8. doi: 10.1128/JVI.02796-12. Epub 2013 Feb 13.
9
Viral fitness: definitions, measurement, and current insights.
Curr Opin Virol. 2012 Oct;2(5):538-45. doi: 10.1016/j.coviro.2012.07.007. Epub 2012 Sep 15.
10
Viral quasispecies evolution.
Microbiol Mol Biol Rev. 2012 Jun;76(2):159-216. doi: 10.1128/MMBR.05023-11.

本文引用的文献

1
Simple genomes, complex interactions: epistasis in RNA virus.
Chaos. 2010 Jun;20(2):026106. doi: 10.1063/1.3449300.
2
Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region.
Genetics. 2010 May;185(1):293-303. doi: 10.1534/genetics.109.112458. Epub 2010 Feb 15.
4
Epistasis among deleterious mutations in the HIV-1 protease.
J Mol Biol. 2009 Sep 18;392(2):243-50. doi: 10.1016/j.jmb.2009.07.015. Epub 2009 Jul 14.
5
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
6
Viral complementation allows HIV-1 replication without integration.
Retrovirology. 2008 Jul 9;5:60. doi: 10.1186/1742-4690-5-60.
7
HIV-1 over time: fitness loss or robustness gain?
Nat Rev Microbiol. 2007 Sep;5(9):C1. doi: 10.1038/nrmicro1594-c1.
8
Crystal structure of an ancient protein: evolution by conformational epistasis.
Science. 2007 Sep 14;317(5844):1544-8. doi: 10.1126/science.1142819. Epub 2007 Aug 16.
9
Understanding the evolutionary fate of finite populations: the dynamics of mutational effects.
PLoS Biol. 2007 Apr;5(4):e94. doi: 10.1371/journal.pbio.0050094.
10
Adaptation of HIV-1 depends on the host-cell environment.
PLoS One. 2007 Mar 7;2(3):e271. doi: 10.1371/journal.pone.0000271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验