Suppr超能文献

基于分层聚类的新型分类器集成生成方法。

Novel layered clustering-based approach for generating ensemble of classifiers.

作者信息

Rahman Ashfaqur, Verma Brijesh

机构信息

Central Queensland University, Rockhampton, Australia.

出版信息

IEEE Trans Neural Netw. 2011 May;22(5):781-92. doi: 10.1109/TNN.2011.2118765. Epub 2011 Apr 11.

Abstract

This paper introduces a novel concept for creating an ensemble of classifiers. The concept is based on generating an ensemble of classifiers through clustering of data at multiple layers. The ensemble classifier model generates a set of alternative clustering of a dataset at different layers by randomly initializing the clustering parameters and trains a set of base classifiers on the patterns at different clusters in different layers. A test pattern is classified by first finding the appropriate cluster at each layer and then using the corresponding base classifier. The decisions obtained at different layers are fused into a final verdict using majority voting. As the base classifiers are trained on overlapping patterns at different layers, the proposed approach achieves diversity among the individual classifiers. Identification of difficult-to-classify patterns through clustering as well as achievement of diversity through layering leads to better classification results as evidenced from the experimental results.

摘要

本文介绍了一种创建分类器集成的新颖概念。该概念基于通过在多个层次上对数据进行聚类来生成分类器集成。集成分类器模型通过随机初始化聚类参数,在不同层次上生成数据集的一组替代聚类,并在不同层次的不同聚类模式上训练一组基础分类器。通过首先在每个层次上找到合适的聚类,然后使用相应的基础分类器来对测试模式进行分类。使用多数投票将在不同层次上获得的决策融合为最终判定。由于基础分类器是在不同层次上的重叠模式上进行训练的,因此所提出的方法在各个分类器之间实现了多样性。如实验结果所示通过聚类识别难以分类的模式以及通过分层实现多样性会带来更好的分类结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验