Rahman Ashfaqur, Verma Brijesh
Central Queensland University, Rockhampton, Australia.
IEEE Trans Neural Netw. 2011 May;22(5):781-92. doi: 10.1109/TNN.2011.2118765. Epub 2011 Apr 11.
This paper introduces a novel concept for creating an ensemble of classifiers. The concept is based on generating an ensemble of classifiers through clustering of data at multiple layers. The ensemble classifier model generates a set of alternative clustering of a dataset at different layers by randomly initializing the clustering parameters and trains a set of base classifiers on the patterns at different clusters in different layers. A test pattern is classified by first finding the appropriate cluster at each layer and then using the corresponding base classifier. The decisions obtained at different layers are fused into a final verdict using majority voting. As the base classifiers are trained on overlapping patterns at different layers, the proposed approach achieves diversity among the individual classifiers. Identification of difficult-to-classify patterns through clustering as well as achievement of diversity through layering leads to better classification results as evidenced from the experimental results.
本文介绍了一种创建分类器集成的新颖概念。该概念基于通过在多个层次上对数据进行聚类来生成分类器集成。集成分类器模型通过随机初始化聚类参数,在不同层次上生成数据集的一组替代聚类,并在不同层次的不同聚类模式上训练一组基础分类器。通过首先在每个层次上找到合适的聚类,然后使用相应的基础分类器来对测试模式进行分类。使用多数投票将在不同层次上获得的决策融合为最终判定。由于基础分类器是在不同层次上的重叠模式上进行训练的,因此所提出的方法在各个分类器之间实现了多样性。如实验结果所示通过聚类识别难以分类的模式以及通过分层实现多样性会带来更好的分类结果。