INSERM Unité 901, Marseille, 13009, France.
J Physiol. 2011 May 15;589(Pt 10):2475-96. doi: 10.1113/jphysiol.2010.203703. Epub 2011 Mar 21.
KCC2 is a neuron-specific potassium-chloride co-transporter controlling intracellular chloride homeostasis in mature and developing neurons. It is implicated in the regulation of neuronal migration, dendrites outgrowth and formation of the excitatory and inhibitory synaptic connections. The function of KCC2 is suppressed under several pathological conditions including neuronal trauma, different types of epilepsies, axotomy of motoneurons, neuronal inflammations and ischaemic insults. However, it remains unclear how down-regulation of the KCC2 contributes to neuronal survival during and after toxic stress. Here we show that in primary hippocampal neuronal cultures the suppression of the KCC2 function using two different shRNAs, dominant-negative KCC2 mutant C568A or DIOA inhibitor, increased the intracellular chloride concentration [Cl⁻]i and enhanced the toxicity induced by lipofectamine-dependent oxidative stress or activation of the NMDA receptors. The rescuing of the KCC2 activity using over-expression of the active form of the KCC2, but not its non-active mutant Y1087D, effectively restored [Cl⁻]i and enhanced neuronal resistance to excitotoxicity. The reparative effects of KCC2 were mimicked by over-expression of the KCC3, a homologue transporter. These data suggest an important role of KCC2-dependent potassium/chloride homeostasis under neurototoxic conditions and reveal a novel role of endogenous KCC2 as a neuroprotective molecule.
KCC2 是一种神经元特异性钾氯协同转运蛋白,可控制成熟和发育中的神经元内的氯离子稳态。它参与调节神经元迁移、树突生长以及兴奋性和抑制性突触连接的形成。在几种病理条件下,包括神经元创伤、各种类型的癫痫、运动神经元轴突切断、神经元炎症和缺血性损伤,KCC2 的功能受到抑制。然而,目前尚不清楚 KCC2 的下调如何有助于神经元在毒性应激期间和之后的存活。在这里,我们发现在原代海马神经元培养物中,使用两种不同的 shRNA、显性负性 KCC2 突变体 C568A 或 DIOA 抑制剂抑制 KCC2 功能,会增加细胞内氯离子浓度 [Cl⁻]i,并增强脂质体依赖性氧化应激或 NMDA 受体激活引起的毒性。使用活性形式的 KCC2 过表达而不是其非活性突变体 Y1087D 恢复 KCC2 的活性,可有效恢复 [Cl⁻]i,并增强神经元对兴奋性毒性的抗性。KCC3(一种同源转运蛋白)的过表达模拟了 KCC2 的修复作用。这些数据表明,在神经毒性条件下,KCC2 依赖性钾/氯稳态起着重要作用,并揭示了内源性 KCC2 作为神经保护分子的新作用。