Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
J Physiol. 2019 Mar;597(6):1677-1690. doi: 10.1113/JP276901. Epub 2019 Jan 21.
Potassium-chloride co-transporter 2 (KCC2) plays a critical role in regulating chloride homeostasis, which is essential for hyperpolarizing inhibition in the mature nervous system. KCC2 interacts with many proteins involved in excitatory neurotransmission, including the GluK2 subunit of the kainate receptor (KAR). We show that activation of KARs hyperpolarizes the reversal potential for GABA (E ) via both ionotropic and metabotropic signalling mechanisms. KCC2 is required for the metabotropic KAR-mediated regulation of E , although ionotropic KAR signalling can hyperpolarize E independent of KCC2 transporter function. The KAR-mediated hyperpolarization of E is absent in the GluK1/2 mouse and is independent of zinc release from mossy fibre terminals. The ability of KARs to regulate KCC2 function may have implications in diseases with disrupted excitation: inhibition balance, such as epilepsy, neuropathic pain, autism spectrum disorders and Down's syndrome.
Potassium-chloride co-transporter 2 (KCC2) plays a critical role in the regulation of chloride (Cl ) homeostasis within mature neurons. KCC2 is a secondarily active transporter that extrudes Cl from the neuron, which maintains a low intracellular Cl concentration [Cl ]. This results in a hyperpolarized reversal potential of GABA (E ), which is required for fast synaptic inhibition in the mature central nervous system. KCC2 also plays a structural role in dendritic spines and at excitatory synapses, and interacts with 'excitatory' proteins, including the GluK2 subunit of kainate receptors (KARs). KARs are glutamate receptors that display both ionotropic and metabotropic signalling. We show that activating KARs in the hippocampus hyperpolarizes E , thus strengthening inhibition. This hyperpolarization occurs via both ionotropic and metabotropic KAR signalling in the CA3 region, whereas it is absent in the GluK1/2 mouse, and is independent of zinc release from mossy fibre terminals. The metabotropic signalling mechanism is dependent on KCC2, although the ionotropic signalling mechanism produces a hyperpolarization of E even in the absence of KCC2 transporter function. These results demonstrate a novel functional interaction between a glutamate receptor and KCC2, a transporter critical for maintaining inhibition, suggesting that the KAR:KCC2 complex may play an important role in excitatory:inhibitory balance in the hippocampus. Additionally, the ability of KARs to regulate chloride homeostasis independently of KCC2 suggests that KAR signalling can regulate inhibition via multiple mechanisms. Activation of kainate-type glutamate receptors could serve as an important mechanism for increasing the strength of inhibition during periods of strong glutamatergic activity.
钾氯协同转运蛋白 2(KCC2)在调节氯离子(Cl-)稳态中起关键作用,这对成熟神经系统的超极化抑制至关重要。KCC2 与许多参与兴奋性神经传递的蛋白质相互作用,包括海人藻酸受体(KAR)的 GluK2 亚基。我们表明,通过离子型和代谢型信号机制,KAR 的激活使 GABA 的反转电位(E-)超极化。KCC2 对于代谢型 KAR 介导的 E-调节是必需的,尽管离子型 KAR 信号可以超极化 E-而不依赖于 KCC2 转运体功能。GluK1/2 小鼠中缺乏 KAR 介导的 E-超极化,并且与苔藓纤维末梢中锌的释放无关。KAR 调节 KCC2 功能的能力可能与兴奋:抑制平衡紊乱有关,例如癫痫、神经病理性疼痛、自闭症谱系障碍和唐氏综合征。
钾氯协同转运蛋白 2(KCC2)在成熟神经元中氯离子(Cl-)稳态的调节中起关键作用。KCC2 是一种主动转运蛋白,可将 Cl-从神经元中排出,从而维持低细胞内 Cl-浓度[Cl-]。这导致 GABA 的反转电位(E-)超极化,这是成熟中枢神经系统中快速突触抑制所必需的。KCC2 还在树突棘和兴奋性突触中发挥结构作用,并与“兴奋性”蛋白相互作用,包括海人藻酸受体(KAR)的 GluK2 亚基。KAR 是具有离子型和代谢型信号的谷氨酸受体。我们表明,在海马体中激活 KAR 会超极化 E-,从而增强抑制作用。这种超极化通过 CA3 区的离子型和代谢型 KAR 信号发生,而在 GluK1/2 小鼠中则不存在,并且与苔藓纤维末梢中锌的释放无关。代谢型信号机制依赖于 KCC2,尽管离子型信号机制即使在缺乏 KCC2 转运体功能的情况下也会产生 E-的超极化。这些结果表明,谷氨酸受体和 KCC2 之间存在新的功能相互作用,KCC2 是维持抑制作用的关键转运蛋白,这表明 KAR:KCC2 复合物可能在海马体的兴奋:抑制平衡中发挥重要作用。此外,KAR 调节氯离子稳态而不依赖于 KCC2 的能力表明,KAR 信号可以通过多种机制调节抑制作用。激活 kainate 型谷氨酸受体可能是在强烈谷氨酸能活动期间增加抑制强度的重要机制。