Suppr超能文献

谷氨酸 208 的质子化诱导胍丁胺从精氨酸/胍丁胺反向转运体的外向构象中释放。

Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter.

机构信息

Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Biol Chem. 2011 Jun 3;286(22):19693-701. doi: 10.1074/jbc.M110.202085. Epub 2011 Apr 12.

Abstract

Virulent enteric pathogens have developed several systems that maintain intracellular pH to survive extreme acidic conditions. One such mechanism is the exchange of arginine (Arg(+)) from the extracellular region with its intracellular decarboxylated form, agmatine (Agm(2+)). The net result of this process is the export of a virtual proton from the cytoplasm per antiport cycle. Crystal structures of the arginine/agmatine antiporter from Escherichia coli, AdiC, have been recently resolved in both the apo and Arg(+)-bound outward-facing conformations, which permit us to assess for the first time the time-resolved mechanisms of interactions that enable the specific antiporter functionality of AdiC. Using data from ∼1 μs of molecular dynamics simulations, we show that the protonation of Glu-208 selectively causes the dissociation and release of Agm(2+), but not Arg(+), to the cell exterior. The impact of Glu-208 protonation is transmitted to the substrate binding pocket via the reorientation of Ile-205 carbonyl group at the irregular portion of transmembrane (TM) helix 6. This effect, which takes place only in the subunits where Agm(2+) is released, invites attention to the functional role of the unwound portion of TM helices (TM6 Trp-202-Glu-208 in AdiC) in facilitating substrate translocation, reminiscent of the behavior observed in structurally similar Na(+)-coupled transporters.

摘要

毒性肠道病原体已经开发出几种系统来维持细胞内 pH 值以在极端酸性条件下生存。一种这样的机制是将精氨酸(Arg(+))从细胞外区域与细胞内脱羧形式胍丁胺(Agm(2+))进行交换。这个过程的净结果是每个反转运周期从细胞质中输出虚拟质子。最近已经解析了来自大肠杆菌的精氨酸/胍丁胺反向转运蛋白 AdiC 的apo 和 Arg(+)-结合的外向构象的晶体结构,这使我们能够首次评估使 AdiC 具有特定反向转运蛋白功能的相互作用的时间分辨机制。使用来自 ∼1 μs 的分子动力学模拟数据,我们表明 Glu-208 的质子化选择性地导致 Agm(2+)的解离和释放到细胞外部,但 Arg(+)不会。Glu-208 质子化的影响通过跨膜 (TM) 螺旋 6 不规则部分的 Ile-205 羰基的重定向传递到底物结合口袋。这种仅在释放 Agm(2+)的亚基中发生的效应,引起了对 TM 螺旋(在 AdiC 中为 TM6 Trp-202-Glu-208)未缠绕部分在促进底物易位中的功能作用的关注,类似于在结构上相似的 Na(+)-偶联转运蛋白中观察到的行为。

相似文献

1
Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter.
J Biol Chem. 2011 Jun 3;286(22):19693-701. doi: 10.1074/jbc.M110.202085. Epub 2011 Apr 12.
2
Mechanism of substrate recognition and transport by an amino acid antiporter.
Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.
3
Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10358-63. doi: 10.1073/pnas.1605442113. Epub 2016 Aug 31.
4
5
Structure and mechanism of an amino acid antiporter.
Science. 2009 Jun 19;324(5934):1565-8. doi: 10.1126/science.1173654. Epub 2009 May 28.
7
Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12734-9. doi: 10.1073/pnas.1414093111. Epub 2014 Aug 18.
8
Molecular mechanism of substrate selectivity of the arginine-agmatine Antiporter AdiC.
Sci Rep. 2018 Oct 23;8(1):15607. doi: 10.1038/s41598-018-33963-1.
9
Substrate selectivity in arginine-dependent acid resistance in enteric bacteria.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5893-7. doi: 10.1073/pnas.1301442110. Epub 2013 Mar 25.

引用本文的文献

1
Function and Regulation of Acid Resistance Antiporters.
J Membr Biol. 2019 Oct;252(4-5):465-481. doi: 10.1007/s00232-019-00073-6. Epub 2019 Jun 25.
2
Molecular mechanism of substrate selectivity of the arginine-agmatine Antiporter AdiC.
Sci Rep. 2018 Oct 23;8(1):15607. doi: 10.1038/s41598-018-33963-1.
3
Shared dynamics of LeuT superfamily members and allosteric differentiation by structural irregularities and multimerization.
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749). doi: 10.1098/rstb.2017.0177.
4
Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10358-63. doi: 10.1073/pnas.1605442113. Epub 2016 Aug 31.
5
6
Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding.
Front Neurol. 2015 Jun 9;6:134. doi: 10.3389/fneur.2015.00134. eCollection 2015.
7
Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.
PLoS Comput Biol. 2014 Oct 9;10(10):e1003879. doi: 10.1371/journal.pcbi.1003879. eCollection 2014 Oct.
10
Visualizing functional motions of membrane transporters with molecular dynamics simulations.
Biochemistry. 2013 Jan 29;52(4):569-87. doi: 10.1021/bi301086x. Epub 2013 Jan 17.

本文引用的文献

1
Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT.
Nature. 2010 Sep 9;467(7312):233-6. doi: 10.1038/nature09310.
2
Crystal structure of the carnitine transporter and insights into the antiport mechanism.
Nat Struct Mol Biol. 2010 Apr;17(4):492-6. doi: 10.1038/nsmb.1788. Epub 2010 Mar 28.
3
Mechanism of substrate recognition and transport by an amino acid antiporter.
Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.
4
Structure and mechanism of a Na+-independent amino acid transporter.
Science. 2009 Aug 21;325(5943):1010-4. doi: 10.1126/science.1176088. Epub 2009 Jul 16.
5
Structure of a prokaryotic virtual proton pump at 3.2 A resolution.
Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.
6
Structure and mechanism of an amino acid antiporter.
Science. 2009 Jun 19;324(5934):1565-8. doi: 10.1126/science.1173654. Epub 2009 May 28.
7
Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP.
Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.
8
Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.
Science. 2008 Oct 31;322(5902):709-13. doi: 10.1126/science.1164440. Epub 2008 Oct 16.
9
Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily.
J Biol Chem. 2008 Nov 28;283(48):33240-8. doi: 10.1074/jbc.M806917200. Epub 2008 Sep 25.
10
The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
Science. 2008 Aug 8;321(5890):810-4. doi: 10.1126/science.1160406. Epub 2008 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验