Suppr超能文献

调控机制在油棕果实中果皮成熟、成熟和功能特化中的作用,涉及脂质和类胡萝卜素代谢。

Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism.

机构信息

Institut de Recherche pour le Développement, UMR Diversité et Adaptation et Développement des Plantes, 34394 Montpellier cedex 5, France.

出版信息

Plant Physiol. 2011 Jun;156(2):564-84. doi: 10.1104/pp.111.175141. Epub 2011 Apr 12.

Abstract

Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model.

摘要

水果为人类饮食提供了必需的营养物质和维生素。油棕(Elaeis guineensis)果实富含油脂的中果皮组织不仅是世界食用油的主要来源,也是类胡萝卜素前体维生素 A 的最丰富的膳食来源。本研究探讨了油棕中果皮这两种突出代谢特性的转录基础。形态学、细胞学、生物化学和激素特征定义了中果皮发育的关键阶段。然后,对成熟和成熟过程中之前和期间的发育阶段进行了 454 焦磷酸测序衍生的转录组组装,此时脂质和类胡萝卜素生物合成的速度很高。总共鉴定了 2629 个具有差异表达的重叠群,揭示了代谢和调节成分的协调。进一步的分析集中在脂肪酸和三酰基甘油组装途径以及类胡萝卜素生物合成过程中。值得注意的是,鉴定出一个与拟南芥(Arabidopsis thaliana)种子油转录因子 WRINKLED1 相似的重叠群,其转录谱与几种脂肪酸生物合成基因和脂质积累的高速度相协调,表明种子和果实之间存在一些共同的调节特征。我们还重点研究了果实的转录调控网络,特别是与中果皮中的乙烯转录和 GLOBOSA/PISTILLATA 样蛋白相关的网络,以及乙烯在成熟过程中协调 VII 型乙烯反应因子转录调控的核心作用。我们的研究结果表明,与在双子叶番茄(Solanum lycopersicum)肉质果实模型中鉴定的转录调控成分相比,单子叶果实中发生了调控成分的分化。

相似文献

3
Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening.
J Agric Food Chem. 2014 Aug 13;62(32):8143-52. doi: 10.1021/jf500975h. Epub 2014 Aug 5.
8
Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.).
Biochem Genet. 2023 Dec;61(6):2382-2400. doi: 10.1007/s10528-023-10376-y. Epub 2023 Apr 15.
9
Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12527-32. doi: 10.1073/pnas.1106502108. Epub 2011 Jun 27.
10
Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis.
J Agric Food Chem. 2013 Feb 27;61(8):1920-7. doi: 10.1021/jf304561f. Epub 2013 Feb 18.

引用本文的文献

2
Unveiling transfer RNA modifications of oil palm and their dynamic changes during fruit ripening.
BMC Plant Biol. 2025 Mar 29;25(1):398. doi: 10.1186/s12870-025-06426-9.
3
Fatty Acid and Lipid Metabolism in Oil Palm: From Biochemistry to Molecular Mechanisms.
Int J Mol Sci. 2025 Mar 12;26(6):2531. doi: 10.3390/ijms26062531.
4
Comparative analysis of transcriptome in oil biosynthesis between seeds and non-seed tissues of fruit.
Front Plant Sci. 2024 Oct 2;15:1441602. doi: 10.3389/fpls.2024.1441602. eCollection 2024.
7
Lipidomic Profiles of Lipid Biosynthesis in Oil Palm during Fruit Development.
Metabolites. 2023 Jun 6;13(6):727. doi: 10.3390/metabo13060727.
8
Identification and validation of reference genes in vetiver () root transcriptome.
Physiol Mol Biol Plants. 2023 May;29(5):613-627. doi: 10.1007/s12298-023-01315-7. Epub 2023 May 25.
9
Environmental and trophic determinism of fruit abscission and outlook with climate change in tropical regions.
Plant Environ Interact. 2020 Apr 22;1(1):17-28. doi: 10.1002/pei3.10011. eCollection 2020 Jun.
10
Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.).
Biochem Genet. 2023 Dec;61(6):2382-2400. doi: 10.1007/s10528-023-10376-y. Epub 2023 Apr 15.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
Acyl-lipid metabolism.
Arabidopsis Book. 2010;8:e0133. doi: 10.1199/tab.0133. Epub 2010 Jun 11.
3
Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis.
Plant Physiol. 2011 Jun;156(2):674-86. doi: 10.1104/pp.111.173641. Epub 2011 Apr 6.
5
Stepwise origin and functional diversification of the AFL subfamily B3 genes during land plant evolution.
J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:33-45. doi: 10.1142/s0219720010005129.
6
A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening.
Plant J. 2010 Dec;64(6):936-47. doi: 10.1111/j.1365-313X.2010.04384.x. Epub 2010 Nov 17.
8
Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato.
Mol Genet Genomics. 2010 Dec;284(6):455-75. doi: 10.1007/s00438-010-0580-1. Epub 2010 Oct 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验