Kirkilionis Markus, Janus Ulrich, Sbano Luca
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
Theory Biosci. 2011 Sep;130(3):165-82. doi: 10.1007/s12064-011-0125-0. Epub 2011 Apr 13.
We present a new approach or framework to model dynamic regulatory genetic activity. The framework is using a multi-scale analysis based upon generic assumptions on the relative time scales attached to the different transitions of molecular states defining the genetic system. At micro-level such systems are regulated by the interaction of two kinds of molecular players: macro-molecules like DNA or polymerases, and smaller molecules acting as transcription factors. The proposed genetic model then represents the larger less abundant molecules with a finite discrete state space, for example describing different conformations of these molecules. This is in contrast to the representations of the transcription factors which are-like in classical reaction kinetics-represented by their particle number only. We illustrate the method by considering the genetic activity associated to certain configurations of interacting genes that are fundamental to modelling (synthetic) genetic clocks. A largely unknown question is how different molecular details incorporated via this more realistic modelling approach lead to different macroscopic regulatory genetic models which dynamical behaviour might-in general-be different for different model choices. The theory will be applied to a real synthetic clock in a second accompanying article (Kirkilioniset al., Theory Biosci, 2011).
我们提出了一种用于对动态调控基因活性进行建模的新方法或框架。该框架基于对与定义遗传系统的分子状态不同转变相关的相对时间尺度的一般假设,采用多尺度分析。在微观层面,此类系统由两种分子参与者的相互作用调控:像DNA或聚合酶这样的大分子,以及作为转录因子起作用的小分子。所提出的遗传模型随后用有限离散状态空间来表示较大且数量较少的分子,例如描述这些分子的不同构象。这与转录因子的表示方式形成对比,转录因子在经典反应动力学中仅由其粒子数来表示。我们通过考虑与相互作用基因的某些配置相关的基因活性来说明该方法,这些相互作用基因对于(合成)基因时钟建模至关重要。一个很大程度上未知的问题是,通过这种更现实的建模方法纳入的不同分子细节如何导致不同的宏观调控遗传模型,其动力学行为通常可能因不同的模型选择而不同。该理论将在第二篇配套文章(Kirkilioniset al., Theory Biosci, 2011)中应用于一个实际的合成时钟。