Suppr超能文献

使用分段确定性马尔可夫过程对非绝热状态下的随机基因动力学进行高效分析。

Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes.

机构信息

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK.

出版信息

J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0804.

Abstract

Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.

摘要

单细胞实验表明,基因表达具有随机性和爆发性,这种特征可能源于具有不同活性的启动子状态之间的缓慢转换。除了缓慢的染色质和/或 DNA 环动态外,长寿命启动子状态的一个来源是转录因子与启动子的缓慢结合和解离动力学,即非绝热结合状态。在这里,我们引入了一种简单的分析框架,称为分段确定性马尔可夫过程(PDMP),它可以准确描述非绝热状态下基因表达的随机动力学。我们通过分析非绝热极限下基于滴定的振荡器的性质,在一个非平凡的动力系统上说明了 PDMP 的实用性。我们首先展示如何将潜在的化学主方程转换为 PDMP,其中启动子状态之间的缓慢转换是随机的,但它们的速率取决于受这些启动子调节的转录因子更快的确定性动力学。我们表明,PDMP 准确地描述了基于激活剂和抑制剂的滴定振荡器中随机循环的观察到的周期。然后,我们将我们的 PDMP 分析推广到更复杂的基于滴定的振荡器版本,以解释多个结合位点如何延长周期并提高相干性。最后,我们表明先前在基于滴定的振荡器中观察到的噪声诱导振荡是如何源于启动子位点的非绝热和离散结合事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba81/5805981/0b0d781a6166/rsif20170804-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验